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Structure

1. Examining
• Correctness

• Tractability

• Cooperation and Probability

2. Repairing
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Part I: Examining
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Chapter 1: Correctness

How should we define correctness in MAS?
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How Should We Define Multi-Agent Systems Correctness?

Classical notion of correctness ignores agents preferences
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How Should We Define Multi-Agent Systems Correctness?

Correctness with respect to rational choices of agents
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Not all behaviours are equal, but some are more unequal than others

• Autonomous cars crossing an intersection

• Most of them (are expected to) cross

without crashing with each other

• Cross and crash is also a possible

behaviour of the system

• But cross and crash is not a rational

behaviour

• They would rather do something else (not

crash), thus it’s not a stable behaviour
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Multi-Agent Systems Correctness

How do we define correctness in MAS?

• Is the system correct with respect to the set of stable behaviours?

• Stable behaviours in a group of intelligent agents ⇒ game theory

• Turn MAS into multi-player game
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From Verification to Rational Verification
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From Verification to Rational Verification1

1M. Wooldridge et al. “Rational Verification: From Model Checking to Equilibrium Checking”. In: AAAI. 2016, pp. 4184–4191.
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Rational Verification

• Game G, each Player i is associated with a LTL goal γi

• Each player chooses a strategy; resolves non-deteminism.

• A LTL property ϕ

LTL Game

A multi-player LTL game is a tuple GLTL = (M, λ, (γi )i∈N)

• M = (N, (Aci )i∈N,St, s0, tr) is a concurrent game arena (CGA) a,

• γi is the LTL goal for player i .

• λ : St→ 2AP is a labelling function

aAs usual: N agents; Aci actions of player i ; St states; s0 initial state; tr transition function.
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Useful Games

A (2-player) parity game is a tuple H = (V0,V1,E , α)

• zero-sum turn-based

• V = V0 ∪ V1

• E ⊆ V × V

• α : V → N is a labelling priority function

Player 0 wins if the smallest priority that occurs infinitely often in the infinite play is even.

Otherwise, player 1 wins. Can be solved in NP ∩ coNPa.

aMarcin Jurdziński. “Deciding the winner in parity games is in UP ∩ co-UP”. In: Information Processing Letters (1998).
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Useful Games

A multi-player parity game is a tuple GPAR = (M, (αi )i∈N)

• M = (N, (Aci )i∈N,St, s0, tr) is a concurrent game arena (CGA) 2,

• αi : St→ N is the goal of player i , given as a priority function over St.

2As usual: N agents; Aci actions of player i ; St states; s0 initial state; tr transition function.
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Strategies and Plays

Strategy

Finite state machine σi =〈Si , s0
i , δi , τi 〉

• Si , internal state (s0
i initial state);

• δi : Si × Ac→ Si internal transition function;

• τi : Si → Aci action function.

A strategy is a recipe for the agent prescribing the action to take at every time-step of the game

execution. A strategy profile ~σ =〈σ1, . . . , σN〉 assigns a strategy to each agent in the arena.

Play

Given a strategy assigned to every agent in A, denoted ~σ, there is a unique possible execution

π(~σ) called play.

Note that plays can only be ultimately periodic.
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Nash Equilibria

Payoff Function

Let wi be γi if G is an LTL game, and be αi if G is a Parity game. For a strategy profiles ~σ in

G, we have

payi (π(~σ)) =

{
1, if π(~σ) |= wi

0, otherwise

Nash Equilibrium

For a game G, a strategy profile ~σ is a Nash equilibrium of G if, for every player i and strategy

σ′i ∈ Stri , we have

payi (π(~σ)) ≥ payi (π((~σ−i , σ
′
i ))) .

i.e., no player can benefit by changing its strategy unilaterally.
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Rational Verification: Decision Problems

E-Nash

Given: Game G, temporal property ϕ.

Quest: Is there any Nash Equilibrium ~σ in G such that π(~σ) |= ϕ?

A-Nash

Given: Game G, temporal property ϕ.

Quest: Does π(~σ) |= ϕ hold for every Nash Equilibrium ~σ in G?

Both decision problems above can be reduced to the following

Non-Emptiness

Given: Game G.

Quest: Is there any Nash Equilibrium in G?
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NE Characterisation

Theorem (NE characterisation)

Let NE(G) be the set of Nash equilibria in G. A strategy profile ~σ ∈ NE(G)

if and only if

the path π = π(~σ) is such that, for every k ∈ N, the pair (sk ,~a
k) of the k-th position of π is

punishing secure 3 for every j ∈ Lose(π). 4 Where ~ak =〈a1, ..., an〉 is an action profile at k.

Along π, no player j can unilaterally get its goal γj achieved.

3Punishing secure: agent j does not have a strategy σ′j that wins against ~σ−j , i.e. π(~σ−j , σ
′
j ) |= γj .

4Here Lose(π) = {j ∈ N : π 6|= γj} are the agents that are not satisfied over π.
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NE Characterisation via Local Reasoning

• Memory is needed to satisfy LTL goal

• Memory is NOT necessary for (2-player) parity games (memoryless/positional

determinacy)

• Reason locally by converting each γi into deterministic parity word automaton (DPW)

Ai =〈2AP,Q, q0, ρ, α〉.
• Then build GLTL = (M, λ, (γi )i∈N) into GPAR = (M′, (α′i )i∈N), where

M′ = (N, (Aci )i∈N,St′, s ′0, tr′) and (α′i )i∈N:

• St′ = St××i∈N
Qi and s ′0 = (s0, q

0
1 , . . . , q

0
n);

• for each state (s, q1, . . . , qn) ∈ St′ and action profile ~a,

tr′((s, q1, . . . , qn), ~a) = (tr(s, ~a), ρ1(q1, λ(s)), . . . , ρn(qn, λ(s));

• α′i (s, q1, . . . qn) = αi (qi ).
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Invariances5

Lemma (Goal Invariance)

Let GLTL be an LTL game and GPAR its associated Parity game. Then, for every strategy

profile ~σ and player i , it is the case that π(~σ) |= γi in GLTL if and only if π(~σ) |= αi in GPAR.

Theorem (NE Invariance)

Let GLTL be an LTL game and GPAR its associated Parity game. Then, NE(GLTL) = NE(GPAR).

5Julian Gutierrez et al. “Automated temporal equilibrium analysis: Verification and synthesis of multi-player games”. In:

Artificial Intelligence (2020).
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Visualising NE Characterisation

s0 sk ′

~σ ∈ NE(GPAR)
⇔

states(π(~σ)) ⊆
⋂

j∈Lose Punj(GPAR)
⋂

j∈Lose Punj(GPAR)

~σ′ /∈ NE(GPAR)

π(~σ)

π(~σ′) 6|= αj

π((~σ′−j , σ
′′
j )) |= αj

⋂
j∈Lose Punj(GPAR) is the punishing region for Lose
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Computing Punishing Region

For a GPAR and a (to-be-punished) player j . We turn GPAR into a 2-player zero-sum parity game

Hj = (V0,V1,E , α) between player j (Player 1) and (coalition) player N−j (Player 0). Circular

states are in V0.

s1 s2(~a−j , aj ) s1 (s1, ~a−j ) s2

punishing region for Lose =
⋂

j∈Lose Punj(GPAR)

Corollary

Computing Puni (GPAR) can be done in polynomial time with respect to the size of the

underlying graph of the game GPAR and exponential in the size of the priority function αi ,

that is, to the size of the range of αi . Moreover, there is a memoryless strategy ~σi that is a

punishment against player i in every state s ∈ Puni (GPAR).
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Finding NE Run

s0 sk ′

~σ ∈ NE(GPAR)
⇔

states(π(~σ)) ⊆
⋂

j∈Lose Punj(GPAR)
⋂

j∈Lose Punj(GPAR)

~σ′ /∈ NE(GPAR)

π(~σ)

π(~σ′) 6|= αj

π((~σ′−j , σ
′′
j )) |= αj

How do we compute π(~σ)? Is there such run π(~σ) inside the punishing region?
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Finding NE Run

• π(~σ) must be accepting for each αi , i ∈Win = N \ Lose.

• Solve emptiness problem of DPWs intersection×i∈Win
Ai

• Intersection of DPWs might involve exponential blowup

• Each parity condition α = (F1, . . . ,Fn) is a Streett condition ((E1,C1), . . . , (Em,Cm)) with

m = d n2e and (Ei ,Ci ) = (F2i+1,
⋃

j≤i F2j), for each 0 ≤ i ≤ m

• Intersection of (Deterministic Streett Word Automata) DSWs×i∈Win
Si and

nonemptiness check can be done in polynomial time

24



The Procedure

1. GLTL ⇒ GPAR

2. For each Win ⊆ N do:

2.1 Compute punishing region⋂
j∈Lose Punj(GPAR)

2.2 Construct DSW×i∈Win
Si

2.3 If L(×i∈Win
Si ) 6= ∅ then return “YES”

3. Return “NO”

• Step 1 can be done in 2EXPTIME: the

number of states is doubly exponential in

the size of LTL goals, but priority functions

(αi )i∈N is only singly exponential.

• Step 2 at most executed exponential in the

number of players

• Step 2.1 is polynomial in the number of

states and exponential in the number of

priorities

• Step 2.2 and 2.3 are both polynomial in

the number of states

• Overall we have 2EXPTIME procedure.
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Rational Verification: Complexity

Theorem (Complexity)

For the case of both the specification ϕ and the agents goals γi expressed as LTL formulas,

E-Nash and A-Nash are 2EXPTIME-Complete.6

6Wooldridge et al., “Rational Verification: From Model Checking to Equilibrium Checking”; Julian Gutierrez, Paul Harrenstein,

and Michael J. Wooldridge. “From model checking to equilibrium checking: Reactive modules for rational verification”. In:

Artificial Intelligence 248 (2017), pp. 123–157.
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EVE (Equilibrium Verification Environment)

• Simple Reactive Modules Language (SRML)7 as modelling language

• Supports general-sum multi-player LTL games, bisimulation-invariant strategies, and

perfect recall.

• Supports Non-emptiness, E-Nash, and A-Nash

• Synthesise strategies

• Open-source: https://github.com/eve-mas/eve-parity

• EVE Online: http://eve.cs.ox.ac.uk/

7Based on the Reactive Modules language used by PRISM and MOCHA.
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Chapter 2: Tractability8

• 2EXPTIME is rather slow

• What can we do to improve?

• Use different goals and properties: GR(1) and mean-payoff value

8Julian Gutierrez et al. “On Computational Tractability for Rational Verification”. In: IJCAI. 2019, pp. 329–335.
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GR(1)9

The language of General Reactivity of rank 1, denoted GR(1), is the fragment of LTL of

formulae written in the following form:

(GFψ1 ∧ . . . ∧ GFψm)→ (GFϕ1 ∧ . . . ∧ GFϕn),

each ψi and ϕi is a Boolean combination of atomic propositions.

(GFreq1 ∧ GFreq2)→ GFack

9Roderick Bloem et al. “Synthesis of Reactive(1) designs”. In: J. Comput. Syst. Sci. 78.3 (2012), pp. 911–938.
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Mean-payoff value

For an infinite sequence β ∈ Rω of real numbers, let mp(β) be the mean-payoff value of β,

defined as follows:

mp(β) = lim inf
n→∞

1

n

n−1∑
i=0

β[i ]

0 21

β1 = 00000000000 . . . mp(β1) = 0

β2 = 01010101010 . . . mp(β2) = 0.5

β3 = 01020102010 . . . mp(β3) = 3/4
30



Games

A multi-player GR(1) game is a tuple GGR(1) = 〈M, (γi )i∈N, λ〉

• M = 〈N,Ac,St, s0, tr〉 is an arena,

• γi is the GR(1) goal for player i .

A multi-player mp game is a tuple Gmp = 〈M, (wi )i∈N, λ〉,

• M = 〈N,Ac,St, s0, tr〉 is an arena

• wi : St→ Z maps states to integer numbers, for each player i

31



Cases

E-Nash

Given: Game G, temporal property ϕ.

Quest: Is there any Nash Equilibrium ~σ in G such that π(~σ) |= ϕ?

γi ϕ E-Nash

LTL LTL 2EXPTIME-complete

GR(1) games

{
GR(1) LTL ?

GR(1) GR(1) ?

mp games

{
mp LTL ?

mp GR(1) ?
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E-Nash in GR(1) games: NE characterisation

Theorem (NE characterisation)

s0 sk ′

~σ ∈ NE(G)
⇔

states(π(~σ)) ⊆
⋂

j∈L Punj(G)
⋂

j∈L Punj(G)

~σ′ /∈ NE(G)

π(~σ)

π(~σ′) 6|= γj

π((~σ′−j , σ
′′
j )) |= γj
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E-Nash in GR(1) games: Computing punishment regions

Theorem (Computing Punj(G))

For a given GR(1) game G, computing Punj(G) of player j can be done in polynomial time

with respect to the size of both G and γj .
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E-Nash in GR(1) games: the procedure

1. Guess a set Win ⊆ N of winners;

2. For each player j ∈ Lose = N \Win, a loser in the game, compute its punishment region

Punj(G);

3. Find desired path π(~σ) consisting of states in
⋂

j∈Lose Punj(G). Any deviation by player j

must remain inside Punj(G), that is, a path π(~σ) satisfying the following three conditions:

• states(π(~σ)) ⊆
⋂

j∈Lose Punj(G)

• states(π(~σ−j , σ
′
j )) ⊆ Punj(G), for every j ∈ Lose and σ′j of j

• π(~σ) |= ϕ ∧
∧

i∈Win γi

Complexities for GR(1) and LTL specifications:

• If ϕ is a GR(1) specification: FPT

• If ϕ is an LTL specification: PSPACE
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E-Nash in mp games: NE characterisation

Theorem (NE characterisation)

For every mp game G and ultimately periodic path π = (s0,~a
0), (s1,~a

1), . . ., the following are

equivalent

1. There is ~σ ∈ NE(G) such that π = π(~σ);

2. There exists ~z ∈ RN, where zi ∈ {puni (s) : s ∈ St} such that, for every i ∈ N

2.1 zi ≤ payi (π), and

2.2 for all k ∈ N, the pair (sk ,~a
k) is zi -secure for i .

Along π, no player i can unilaterally get a payoff greater than zi .
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E-Nash in mp games: NE characterisation

s0 sk ′

~σ ∈ NE(G)
⇔

∃~z∈Sec(G)N∀i∈N, payi(π(~σ)) ≥ zi
⇔

states(π(~σ)) ⊆
⋂

i Puni(G,≤zi )
∀i∈N, zi -secure

payj(π(~σ′)) < payj(π((~σ′−j , σ
′′
j )))

⇔
~σ′ /∈ NE(G)

π(~σ)

π(~σ′)

payj(π((~σ′−j , σ
′′
j )))
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E-Nash in mp games: the procedure

1. Guess a vector ~z ∈ RN of values, each being a punishment value for a player i

2. For each i , compute its zi -punishment region Puni (G,≤zi );

3. Find (u.p.) path π(~σ) consisting of states in
⋂

i Puni (G,≤zi ). Any deviation by player i

must remain inside Puni (G,≤zi ), that is, an ultimately periodic path π(~σ) satisfying that:

• states(π(~σ)) ⊆
⋂

i Puni (G,≤zi )

• states(π(~σ−i , σ
′
i )) ⊆ Puni (G,≤zi ), for every i and σ′i of i

• π(~σ) |= ϕ and ∀i , payi (π(~σ)) ≥ zi

Complexities for GR(1) and LTL specifications:

• If ϕ is a GR(1) specification: NP-complete

• If ϕ is an LTL specification: PSPACE-complete

38



E-Nash in mp games: the procedure

1. Guess a vector ~z ∈ RN of values, each being a punishment value for a player i

2. For each i , compute its zi -punishment region Puni (G,≤zi );

3. Find (u.p.) path π(~σ) consisting of states in
⋂

i Puni (G,≤zi ). Any deviation by player i

must remain inside Puni (G,≤zi ), that is, an ultimately periodic path π(~σ) satisfying that:

• states(π(~σ)) ⊆
⋂

i Puni (G,≤zi )

• states(π(~σ−i , σ
′
i )) ⊆ Puni (G,≤zi ), for every i and σ′i of i

• π(~σ) |= ϕ and ∀i , payi (π(~σ)) ≥ zi

Complexities for GR(1) and LTL specifications:

• If ϕ is a GR(1) specification: NP-complete

• If ϕ is an LTL specification: PSPACE-complete

38



Complexity Results

γi ϕ E-Nash

LTL LTL 2EXPTIME-complete

GR(1) LTL PSPACE-complete

GR(1) GR(1) FPT

mp LTL PSPACE-complete

mp GR(1) NP-complete

• Non-Emptiness (E-Nash when ϕ = >):

• LTL games: 2EXPTIME-complete

• GR(1) games: FPT

• mp games: NP-complete

• A-Nash: 2EXPTIME, PSPACE, FPT, PSPACE, coNP.
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Chapter 3: Cooperation and Probability10

• Players can make a binding agreements and form coalitions

• Coalitions can collectively achieve goals

• Cooperative games

• Solution concept: Core

10Julian Gutierrez et al. “Rational Verification for Probabilistic Systems”. In: KR. to appear. 2021.
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Rational Verification in Cooperative Games

• Game G, each Player i is associated with a LTL goal γi

• Each player chooses a strategy; resolves non-deteminism.

• A LTL property ϕ

E-Core

Is there any core ~σ in G such that π(~σ) |= ϕ?

A-Core

Does π(~σ) |= ϕ hold for every core ~σ in G?
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Rational Verification

• Game G, each Player i is associated with a LTL goal γi

• A strategy profile ~σ

Core-Membership

Is ~σ a core in the game G?
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Rational Verification in Cooperative Games

Theorem (Complexity)

For the case of both the specification ϕ and the agents goals γi expressed as LTL formulas,

E-Core, A-Core, and Core-Membership are 2EXPTIME-Complete.11

11Julian Gutierrez, Sarit Kraus, and Michael Wooldridge. “Cooperative Concurrent Games”. In: AAMAS. 2019.
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Complexity Map

Non-Cooperative Cooperative

E-(Nash/Core) 2EXPTIME-Complete 2EXPTIME-Complete

A-(Nash/Core) 2EXPTIME-Complete 2EXPTIME-Complete

(NE/Core)-Membership PSPACE-Complete 2EXPTIME-Complete

Without probabilistic behaviours...
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A Case for Probabilistic Systems

• Real life scenarios often involve probabilities

• Probabilities grant us power, e.g., the dining philosopher problem
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This Work

• Rational verification for probabilistic systems

• Cooperative and non-cooperative games

• Goals and specifications are LTL formulae

• Concurrent actions, infinite horizon, infinite memory

• Qualitative setting: almost-surely satisfaction
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Concurrent Stochastic Games (CSGs)

Definition (CSG Arena)

A concurrent stochastic game arena (CSGA) is a tuple M = (N,St, s0, (Aci )i∈N, tr), where

• tr : St× ~Ac→ D(St) is probabilistic transition function

Definition (CSG)

A concurrent stochastic game (CSG) is a tuple G = (M, (γi )i∈N, λ), where M is a CSGA, γi
is a LTL formula that represents the goal of player i , and λ : St→ 2AP a labelling function.

47



Concurrent Stochastic Parity Games (CSPGs)

Definition (CSG Arena)

A concurrent stochastic game arena (CSGA) is a tuple M = (N,St, s0, (Aci )i∈N, tr), where

• tr : St× ~Ac→ D(St) is probabilistic transition function

Definition (CSPG)

A concurrent stochastic parity game (CSPG) is a tuple GPAR = (M, (αi )i∈N), where

αi : St→ N is the goal of player i , given as a priority function over the set of states St. A

path π satisfies a priority function α, denoted by π |= α, if the minimum number occuring

infinitely often in the infinite sequence α(π0)α(π1)α(π2) . . . is even.
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Strategies

Definition (Strategy)

A strategy for player i can be understood (abstractly) as a function σi : St+ → D(Aci ) that

assigns to every non-empty finite sequence of states a probability distribution over player i ’s

set of actions.
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Strategies

Definition (Strategy as Transducer)

a strategy in G for player i is a a transducer σi = (Qi , q
0
i , δi , τi )

A strategy is

• memoryless if there exists a transducer encoding the strategy with |Qi | = 1

• finite-memory if |Qi | <∞
• deterministic if τi : Qi × St→ Aci , such that for every qi ∈ Qi and every s ∈ St, we have

that τi (qi , s) ∈ Aci (s)
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Satisfaction Conditions

LTL goals:

• For a given game G and a strategy profile ~σ, a formula ϕ is said to be almost-surely

satisfied, denoted ~σ |= AS(ϕ), iff, PrC~σ ({π ∈ Paths(C~σ, s0) : π |= ϕ}) = 1.

• ϕ is satisfied with non-zero probability, denoted ~σ |= NZ(ϕ) iff

PrC~σ ({π ∈ Paths(C~σ, s0) : π |= ϕ}) > 0.

• NZ(ϕ) ≡ ¬AS(¬ϕ)

Parity goals:

• ~σ |= AS(α) if and only if PrC~σ ({π ∈ Paths(C~σ, s0) : π |= α}) = 1.

• ~σ |= NZ(α) if and only if PrC~σ ({π ∈ Paths(C~σ, s0) : π |= α}) > 0.
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Core

Definition (Deviation)

A deviation is a joint strategy ~σA for the coalition A ⊆ N, with A 6= ∅.

Definition (Beneficial Deviation)

For a strategy profile ~σ, we say ~σ′A is a beneficial deviation from ~σ if A ⊆ Lose(~σ) and for all

~σ′−A, we have A ⊆Win((~σ′A, ~σ
′
−A)).

Definition (Core)

The core of a game G, denoted core(G), is then defined to be the set of strategy profiles that

admit no beneficial deviation.

52



Example

Consider a game with two players N = {1, 2} and two variables AP = {p, q}, with player 1’s

action set being Ac1 = {a, ā} and player 2’s being Ac2 = {b, b̄}. Let γ1 = Fp and γ2 = Fq.

s0

∅

s1

{p, q}

s2

∅

a, b

0.5

a, b̄

ā, b

ā, b̄

0.5

a, b

consider a strategy profile ~σ in which player 1/2 always chooses action a/b in s0 (i.e., chooses

a/b with probability 1)

consider a strategy profile ~σ′ in which player 1/2 chooses action ā/b̄ with non-zero probability
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Non-Coop: NE-Membership

NE-Membership

Given: Game G, strategy profile ~σ.

Question: Is ~σ a Nash equilibrium in the game G?

In general, infinite memory strategies are needed to play ω-regular games with almost-sure

winning conditions. Here, we assume that ~σ can be represented by some finite state machine.
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Non-Coop: NE-Membership

1. For i ∈ N:

1.1 If π(~σ) 6|= AS(γi ) then

1.1.1 If there is σ′i s.t. (~σ−i , σ
′
i ) |= AS(γi ) then return “NO”

2. Return “YES”

• 1.1 amounts to qualitative model checking LTL formula γi over a Markov chain (PSPACE)

• 1.1.1 amounts to qualitative model checking LTL formula γi over a MDP (2EXPTIME)

• Lower-bound: reduce to qualitative model checking LTL formula γi over a MDP

Theorem

NE-Membership for probabilistic systems is 2EXPTIME-complete
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Non-Coop: E/A-Nash

E-Nash

Given: Game G, temporal property ϕ.

Quest: Is there any Nash equilibrium ~σ in G such that π(~σ) |= AS(ϕ)?

• Use the similar construction and NE characterisation to deterministic games

• Use Qualitative Parity Logic (QPL) Realizability problem to find NE run inside punishing

region

• Procedure is 2EXPTIME, lower-bound via LTL model checking over MDPs.

Theorem

E-Nash and A-Nash for probabilistic systems are 2EXPTIME-complete
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Coop: E/A-Core

E-Core

Given: Game G, temporal property ϕ.

Quest: Is there any core ~σ in G such that ~σ |= AS(ϕ)?

• Turn the game into its corresponding parity game

• Check for each possible winning coalition Win ⊆ N s.t. for each possible losing coalition

Lose ⊆ N \Win, there is no beneficial deviation

• Use QPL to solve some problems in the procedure

• Procedure is 2EXPTIME, lower-bound via LTL model checking over MDPs.

Theorem

E-Core and A-Core for probabilistic systems are 2EXPTIME-complete

57



Coop: Core-Membership

Core-Membership

Given: Game G, a strategy profile ~σ.

Quest: Is ~σ a core in G?a

aAgain, we assume that ~σ can be represented by some FSM

• For each Lose ⊆ N \Win(~σ), check if there is beneficial deviation

• This amounts to model checking LTL formula over a MDP (2EXPTIME)

• Lower-bound: reduce to qualitative model checking LTL formula γi over a MDP

Theorem

Core-Membership for probabilistic systems is 2EXPTIME-complete
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Results

Deterministic Non-Coop. Coop.

E-(Nash/Core) 2EXPTIME-C 2EXPTIME-C

A-(Nash/Core) 2EXPTIME-C 2EXPTIME-C

(NE/Core)-Mbrshp PSPACE-C 2EXPTIME-C

Table 1: Complexity results for deterministic systems.

Probabilistic Non-Coop. Coop.

E-(Nash/Core) 2EXPTIME-C 2EXPTIME-C

A-(Nash/Core) 2EXPTIME-C 2EXPTIME-C

(NE/Core)-Mbrshp 2EXPTIME-C 2EXPTIME-C

Table 2: Complexity results for probablisitc systems.
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Part II: Repairing
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Dealing with missing or bad equilibria

Problem

Individually rational choices can cause outcomes that are highly undesirable, e.g., there is no

equilibrium or the temporal specification is not satisfied.

Question

The problem with this is intrinsic in the system. Can we repair it in order to gain (desirable)

equilibria?

Solution

Equilibrium Design: redesign the game such that individually rational behaviour leads to desired

outcomes.
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Equilibrium Design via Subsidy Scheme

Subsidy scheme

Let G = (A,w1, . . . ,wn) be a Mean-payoff game.

A subsidy scheme for G is a function κ : N× St→ N.

The cost of κ is cost(κ) =
∑

i∈N

∑
s∈St κ(i)(s).

Subsidised game

For a Mean-payoff game G = (A,w1, . . . ,wn) and a subsidy scheme κ, the subsidised game

(G, κ) = (A,w ′1, . . . ,w
′
n) is obtained by updating every player’s objective with w ′i (s) = wi +

κ(i)(s), for every s ∈ St.

Intuition

Designers can incentivise players to achieve outcomes that are desirable from the temporal

specification point of view.
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Equilibrium Design Implementation

Definition (Weak Implementation)

For a given game G, a temporal specification ϕ and a budget β ∈ N, find a subsidy scheme κ

with cost(κ) ≤ β such that (G, κ, ϕ) solves E-Nash positively.

Definition (Strong Implementation)

For a given game G, a temporal specification ϕ and a budget β ∈ N, find a subsidy scheme κ

with cost(κ) ≤ β such that (G, κ, ϕ) solves A-Nash positively.
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Filling the toolbox

Theorem (Counting subsidy schemes)

The number of subsidy schemes with cost bounded by β is

|K(G, β)| =
β + 1

m
·
(
β + m

β + 1

)

where m = |St| · |N|
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Solving Weak Implementation: Intuition

G

s0

∀i∈N, zi -secure

E-Nash:

∃~σ ∈ NE(G), π(~σ) |= ϕ?

No :-(

π(~σ′) |= ϕ

π(~σ′′) |= ϕ
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Solving Weak Implementation: Intuition

G

s0 E-Nash:

∃~σ ∈ NE(G), π(~σ) |= ϕ?

No :-(

If only we can modify

the perimeter...

π(~σ′) |= ϕ

π(~σ′′) |= ϕ
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Solving Weak Implementation: Intuition

(G, κ)

s0 E-Nash:

∃~σ ∈ NE(G), π(~σ) |= ϕ?

YES :-)

Apply subsidy scheme

κ ∈ K(G, β)∀i∈N, z
′
i -secure

π(~σ′) |= ϕ

π(~σ′′) |= ϕ
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Solving Weak Implementation: Complexity

Complexity

• For LTL specifications: PSPACE-complete (bottleneck is LTL model-checking)

• For GR(1) specifications: NP-complete (GR(1) model checking is poly, all guesses are

made together)
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made together)
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Solving Strong Implementation: Intuition

G

s0

∀i∈N, zi -secure

A-Nash:

∀~σ ∈ NE(G), π(~σ) |= ϕ?

No :-(

π(~σ′) |= ϕ

π(~σ′′) |= ¬ϕ
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Solving Weak Implementation: Intuition

G

s0 A-Nash:

∀~σ ∈ NE(G), π(~σ) |= ϕ?

No :-(

If only we can modify

the perimeter...

π(~σ′) |= ϕ

π(~σ′′) |= ¬ϕ
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Solving Weak Implementation: Intuition

(G, κ)

s0 A-Nash:

∀~σ ∈ NE(G), π(~σ) |= ϕ?

YES :-)

Apply subsidy scheme

κ ∈ K(G, β)∀i∈N, z
′
i -secure
π(~σ′) |= ϕ

π(~σ′′) |= ¬ϕ
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Solving Strong Implementation

Complexity

• For LTL specifications: PSPACE-complete (alternating quantification is absorbed)

• For GR(1) specifications: ΣP
2 -complete (extra alternation is unavoidable)
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Solving Strong Implementation

Complexity

• For LTL specifications: PSPACE-complete (alternating quantification is absorbed)

• For GR(1) specifications: ΣP
2 -complete (extra alternation is unavoidable)
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Optimizing the budget

For a given game G, we say that β is the optimal budget if it is the minimum required to solve

weak or strong implementation, respectively.

Definition (Optimality)

Opt-WI For a game G, compute the optimal budget β for the Weak Implementation.

Opt-SI For a game G, compute the optimal budget β for the Strong Implementation.
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Solving Optimality

Weak Implementation Complexity

• For LTL specifications: FPSPACE-complete (binary search is absorbed)

• For GR(1) specifications: FPNP-complete. Hardness via TSP problem.

Strong Implementation Complexity

• For LTL specifications: PSPACE-complete (binary search is absorbed)

• For GR(1) specifications: FPΣP
2 -complete. Hardness via Weighted MinQSAT2

problem.
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Checking the budget

Definition (Exactness)

Exact-WI For a game G, check whether b is optimal for the Weak Implementation.

Exact-SI For a game G, check whether b is the optimal for the Strong Implementation.
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Checking uniqueness of the scheme

Definition (Uniqueness)

UOpt-WI For a game G, check whether there is a unique subsidy scheme κ for the optimal

budget β that solves the Weak Implementation.

UOpt-SI For a game G, check whether there is a unique subsidy scheme κ for the optimal

budget β that solves the Strong Implementation.
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Complexity table summary

LTL Spec. GR(1) Spec.

Weak Implementation PSPACE-complete NP-complete

Strong Implementation PSPACE-complete ΣP
2 -complete

Opt-WI FPSPACE-complete FPNP-complete

Opt-SI FPSPACE-complete FPΣP
2 -complete

Exact-WI PSPACE-complete DP -complete

Exact-SI PSPACE-complete DP
2 -complete

UOpt-WI PSPACE-complete ∆P
2 -complete

UOpt-SI PSPACE-complete ∆P
3 -complete
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Epilogue

• An approach to multi-agent systems correctness

• Decision problems and procedures to solve them

• A quest for tractable cases

• A different model with cooperative and probabilistic behaviour

• Future investigation: imperfect information, more quantitative flavour in probabilistic

model, learning agents,...
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Thank you!
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