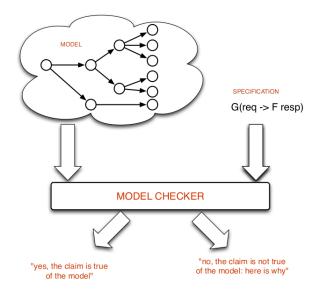
Equilibrium Design for Concurrent Games

Julian Gutierrez¹ Muhammad Najib² Giuseppe Perelli³ Michael Wooldridge⁴ Monash University¹ University of Kaiserslautern² Sapienza University of Rome³ University of Oxford⁴ How to check system correctness.

- System represented as mathematical structure \mathcal{K} (e.g., Kripke structure, Labeled transition system)
- Desired behavior represented as logic formula ϕ (e.g., Modal Logic, LTL, CTL, CTL*)
- The systems meets the behavior if (and only if) $\mathcal{K} \models \phi$

Model Checking in one picture



- · How do we define correctness in multi-agent systems?
- · Each agent has their own goal. This implies:
 - Rationality
 - Strategic behaviour
 - · Game theory as appropriate framework for correctness investigation

From Model Checking ...

Decide whether a given specification is satisfied over some/all executions of the (closed) system.

From Model Checking ...

Decide whether a given specification is satisfied over some/all executions of the (closed) system.

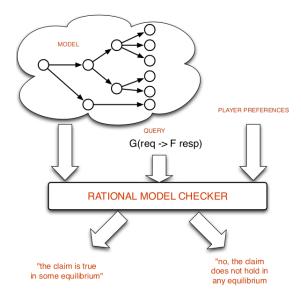
... to Equilibrium Checking!

Decide whether a given specification is satisfied over some/all rational executions of the (open) system.

Wooldridge et al. - Rational Verification: From Model Checking to Equilibrium Checking - AAAI'16

Kupferman et al. - Synthesis with Rational Environment - AMAI'16

Equilibrium Checking (in one slide)



Games are playing on graph-like arenas of the form:

 $\textit{A} = \langle N, Ac, St, s_0, tr, \lambda, (\textit{w}_i)_{i \in N} \rangle$

- N (finite) set of agents;
- Ac (finite) set of actions;
- St (finite) set of states (s₀ initial state);
- tr : $St \times Ac^N \rightarrow St$ transition function ^{*a*};
- * $\lambda: St \rightarrow 2^{AP}$ labelling function;
- $w_i: \operatorname{St} \to \mathbb{Z}$ weight functions.

^aAt every state, agents take actions concurrently and move to the next state

Games are playing on graph-like arenas of the form:

 $\mathbf{A} = \langle \mathbf{N}, \mathbf{Ac}, \mathbf{St}, \mathbf{s}_0, \mathsf{tr}, \lambda, (\mathbf{w}_i)_{i \in \mathbf{N}} \rangle$

- N (finite) set of agents;
- Ac (finite) set of actions;
- St (finite) set of states (s₀ initial state);
- tr : $St \times Ac^N \rightarrow St$ transition function ^{*a*};
- $\lambda: St \rightarrow 2^{AP}$ labelling function;
- $w_i: \operatorname{St} \to \mathbb{Z}$ weight functions.

^aAt every state, agents take actions concurrently and move to the next state

Outcomes are infinite sequences of states and global actions

$$\pi = s_0 \xrightarrow{\vec{a}_0} s_1 \xrightarrow{\vec{a}_1} \ldots \in (\operatorname{St} \times \operatorname{Ac}^{Ag})^{\omega}$$

A payoff function pay, for agent i is defined over outcomes

 $\mathsf{pay}_i: (\mathsf{St} imes \operatorname{Ac}^{\mathcal{Ag}})^\omega o \mathbb{R}$

A payoff function pay, for agent i is defined over outcomes

 $\mathsf{pay}_i: (\mathsf{St} \times \mathrm{Ac}^{\mathcal{Ag}})^\omega \to \mathbb{R}$

```
Temporal logic specification

pay_i(\pi) = \begin{cases} 1, & \text{if } \pi \models \gamma_i \\ 0, & \text{if } \pi \not\models \gamma_i \end{cases},
\gamma_i \in LTL, GR(1), \dots
```

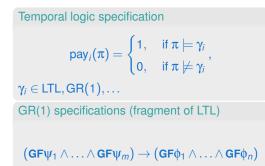
A payoff function pay, for agent i is defined over outcomes

 $\mathsf{pay}_i: (\mathsf{St} \times \mathsf{Ac}^{\mathcal{Ag}})^\omega \to \mathbb{R}$

Temporal logic specification $pay_{i}(\pi) = \begin{cases} 1, & \text{if } \pi \models \gamma_{i} \\ 0, & \text{if } \pi \not\models \gamma_{i} \end{cases},$ $\gamma_{i} \in LTL, GR(1), \dots$ GR(1) specifications (fragment of LTL) $(GF\psi_{1} \land \dots \land GF\psi_{m}) \rightarrow (GF\phi_{1} \land \dots \land GF\phi_{n})$

A payoff function pay, for agent i is defined over outcomes

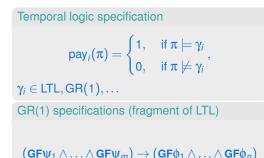
 $\mathsf{pay}_i: (\mathsf{St} \times \mathsf{Ac}^{\mathcal{Ag}})^{\omega} \to \mathbb{R}$



Mean-Payoff $pay_i(\pi) = \lim \inf_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} w_i(\pi_j)$

A payoff function pay, for agent i is defined over outcomes

 $\mathsf{pay}_i: (\mathsf{St} \times \mathsf{Ac}^{\mathcal{Ag}})^{\omega} \to \mathbb{R}$



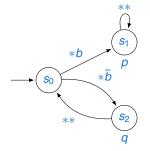
Mean-Payoff

$$\operatorname{pay}_i(\pi) = \lim \inf_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} w_i(\pi_j)$$

Agents strategically try to maximise their payoff.

Some Examples: Qualitative Objectives

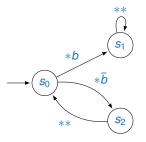
A qualitative game with $N = \{\bigcirc, \blacksquare\}$. Actions for every $s_{x \in \{0,1,2\}}$, Ac $_{\bigcirc}(s_x) = \{a, \bar{a}\}$ and Ac $_{\blacksquare}(s_x) = \{b, \bar{b}\}$. Goals $\gamma_{\bigcirc} = \mathsf{FG}p$, $\gamma_{\blacksquare} = \mathsf{GF}q$.



wins by choosing the action \bar{b} every time in s_0 . Since $(s_0 s_2)^{\omega} \models \gamma_{\blacksquare}$, thus $pay_{\blacksquare}((s_0 s_2)^{\omega}) = 1^{a}$.

^aYes, I've made a slight abuse of notation here :|

A quantitative game with the same set of players and set of actions. Let $w_A(s_1) = 1, w_B(s_2) = 1$, and all zeros for the others.



Again, \blacksquare "wins" by choosing the action \overline{b} every time in s_0 . She gets $pay_{\blacksquare}((s_0s_2)^{\omega}) = \frac{1}{2}$, whilst \bigcirc gets $pay_{\bigcirc}((s_0s_2)^{\omega}) = 0$.

Strategies and Plays

Strategy

Finite state machine $\sigma = \langle Q, St, q_0, \delta, \tau \rangle$

- *Q*, internal state (*q*₀ initial state);
- $\delta: Q \times St \rightarrow Q$ internal transition function;
- $\tau: Q \rightarrow Ac$ action function.

A strategy is a recipe for the agent prescribing the action to take at every time-step of the game execution.

Play

Given a strategy assigned to every agent in *A*, denoted $\vec{\sigma}$, there is a unique possible execution $\pi(\vec{\sigma})$ called play.

Note that plays can only be ultimately periodic.

A game $\mathcal{G} = \langle A, pay_1, \dots, pay_{|N|} \rangle$ is defined by an arena and a list of payoff functions, one per each agent.

For a game G, a strategy profile $\vec{\sigma}$ is a Nash equilibrium of G if, for every player *i* and strategy σ'_i , we have

 $\mathsf{pay}_i(\pi(\vec{\sigma})) \ge \mathsf{pay}_i(\pi((\vec{\sigma}_{-i}, \sigma'_i)))$.

i.e., a player cannot improve their payoff by going "alone".

Non-Emptiness

Given: Game G. Question: Is there any Nash Equilibrium in G?

Non-Emptiness

Given: Game G. Question: Is there any Nash Equilibrium in G?

E-Nash Given: Game \mathcal{G} , temporal property φ . Question: Is there any Nash Equilibrium $\vec{\sigma}$ in \mathcal{G} such that $\pi(\vec{\sigma}) \models \varphi$?

Non-Emptiness

Given: Game G. Question: Is there any Nash Equilibrium in G?

E-Nash

Given: Game \mathcal{G} , temporal property φ . Question: Is there any Nash Equilibrium $\vec{\sigma}$ in \mathcal{G} such that $\pi(\vec{\sigma}) \models \varphi$?

A-Nash

Given: Game \mathcal{G} , temporal property φ . Question: Does $\pi(\vec{\sigma}) \models \varphi$ hold for every Nash Equilibrium $\vec{\sigma}$ in \mathcal{G} ?

Game types and complexities

Game type can be tuned using two different parameters:

- (1) Temporal specification
- (2) Players' goals.

Game types and complexities

Game type can be tuned using two different parameters:

- (1) Temporal specification
- (2) Players' goals.

Different types have different computational complexities.

Specification	Players' goals	Equilibrium checking
LTL	LTL	2EXPTIME-complete
LTL	GR(1)	PSPACE-complete
LTL	Mean-payoff	PSPACE-complete
GR(1)	GR(1)	FPT
GR(1)	Mean-payoff	NP-complete

Gutierrez et al. - Iterated Boolean Games - Inf&Comp'15

Gutierrez et al. - On Computational Tractability for Rational Verification -IJCAI'19

Problem

Individually rational choices can cause outcomes that are highly undesirable, *e.g.*, there is no equilibrium or the temporal specification is not satisfied.

Problem

Individually rational choices can cause outcomes that are highly undesirable, *e.g.*, there is no equilibrium or the temporal specification is not satisfied.

Question

The problem with this is intrinsic in the system. Can we repair it in order to gain (desirable) equilibria?

Problem

Individually rational choices can cause outcomes that are highly undesirable, *e.g.*, there is no equilibrium or the temporal specification is not satisfied.

Question

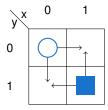
The problem with this is intrinsic in the system. Can we repair it in order to gain (desirable) equilibria?

Solution

Equilibrium Design: redesign the game such that individually rational behaviour leads to desired outcomes.

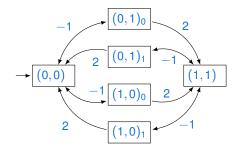
Almagor et al. - Repairing Multi-Player Games - CONCUR'15

Yet Another Example



Each time an agent moves one step, it gets payoff of -1. The goal of each agent is to visit each corners (0,0) and (1,1) in alternating fashion. To model this goal, we reward the robots with 2 units of energy, every time they travel from one corner to the opposite corner. Extra assumptions: at each timestep, each robot has to make a move, that is, it cannot stay at the same position for two consecutive timesteps, and each robot can only move at most one step.

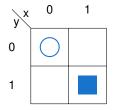
Yet Another Example: Converting into transition system



Transition system for player \bigcirc . The vertices are marked with $(x, y)_f$, where $f \in \{0, 1\}$ is a flag to mark the last corner Player \bigcirc visited (0 for (0, 0) and 1 for (1, 1).) ^{*a*}

^aPayoffs are on the edges instead of vertices, however, we can easily transform the transition system and push the payoffs to the vertices.

Not all equilibria are equal, but some are more unequal than others



- Player moves: S, E, N, W,...; Player ■: N, W, S, E,... this is a Nash equilibrium, each player gets ¹/₂, and a good one.
- Player O moves: S, E, W, N,...; Player : N, W, E, S,... this is a Nash equilibrium, each player gets ¹/₂, and a also good one.
- Player moves: S, E, N, W,...; Player ■: W, N, E, S,... this is also a Nash equilibrium, with payoff of ¹/₂ for each player, but a **bad** one.

How can we "nudge" the players such that the bad equilibria are eliminated or good equilibrium introduced, if none exists?

Subsidy scheme

Let $\mathcal{G} = (A, w_1, \dots, w_n)$ be a Mean-payoff game. A subsidy scheme for \mathcal{G} is a function $\kappa : \mathbb{N} \times \mathrm{St} \to \mathbb{N}$. The cost of κ is $\mathrm{cost}(\kappa) = \sum_{i \in \mathbb{N}} \sum_{s \in \mathrm{St}} \kappa(i)(s)$.

Subsidy scheme

Let $\mathcal{G} = (A, w_1, \dots, w_n)$ be a Mean-payoff game. A subsidy scheme for \mathcal{G} is a function $\kappa : \mathbb{N} \times \mathrm{St} \to \mathbb{N}$. The cost of κ is $\mathrm{cost}(\kappa) = \sum_{i \in \mathbb{N}} \sum_{s \in \mathrm{St}} \kappa(i)(s)$.

Subsidised game

For a Mean-payoff game $\mathcal{G} = (A, w_1, \dots, w_n)$ and a subsidy scheme κ , the subsidised game $(\mathcal{G}, \kappa) = (A, w'_1, \dots, w'_n)$ is obtained by updating every player's objective with $w'_i(s) = w_i + \kappa(i)(s)$, for every $s \in St$.

Subsidy scheme

Let $\mathcal{G} = (A, w_1, \dots, w_n)$ be a Mean-payoff game. A subsidy scheme for \mathcal{G} is a function $\kappa : \mathbb{N} \times \mathrm{St} \to \mathbb{N}$. The cost of κ is $\mathrm{cost}(\kappa) = \sum_{i \in \mathbb{N}} \sum_{s \in \mathrm{St}} \kappa(i)(s)$.

Subsidised game

For a Mean-payoff game $\mathcal{G} = (A, w_1, \dots, w_n)$ and a subsidy scheme κ , the subsidised game $(\mathcal{G}, \kappa) = (A, w'_1, \dots, w'_n)$ is obtained by updating every player's objective with $w'_i(s) = w_i + \kappa(i)(s)$, for every $s \in St$.

Intuition

Designers can incentivise players to achieve outcomes that are desirable from the temporal specification point of view.

Definition (Weak Implementation)

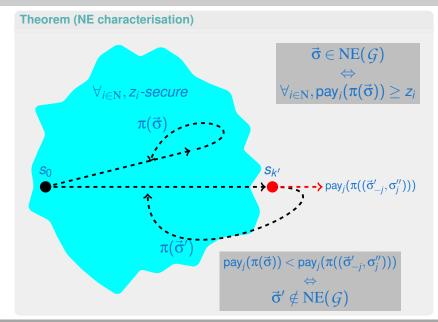
For a given game \mathcal{G} , a temporal specification φ and a budget $\beta \in \mathbb{N}$, find a subsidy scheme κ with $cost(\kappa) \leq \beta$ such that $(\mathcal{G}, \kappa, \varphi)$ solves E-NASH positively.

Definition (Strong Implementation)

For a given game \mathcal{G} , a temporal specification φ and a budget $\beta \in \mathbb{N}$, find a subsidy scheme κ with $cost(\kappa) \leq \beta$ such that $(\mathcal{G}, \kappa, \varphi)$ solves A-NASH positively.

Wooldridge et al. - Incentive engineering for Boolean games - AIJ'13

Filling the toolbox



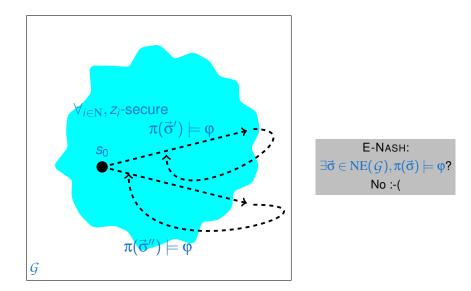
Theorem (Counting subsidy schemes)

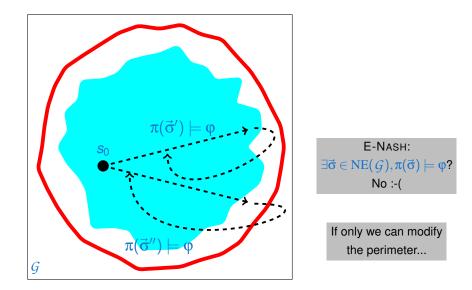
The number of subsidy schemes with cost bounded by β is

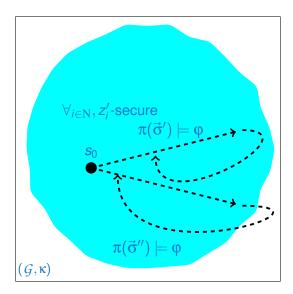
$$|\mathcal{K}(\mathcal{G},\beta)| = \frac{\beta+1}{m} \cdot {\beta+m \choose \beta+1}$$

where $m = |\mathbf{St}| \cdot |\mathbf{N}|$

Solving Weak Implementation: Intuition







Apply subsidy scheme $\kappa\in \mathcal{K}(\mathcal{G},\beta)$

E-NASH:
$$\exists \vec{\sigma} \in NE(\mathcal{G}), \pi(\vec{\sigma}) \models \phi$$
?
YES :-)

```
Algorithm Weak ImplementationGuess a subsidy scheme \kappa;Guess a state s \in St for every player i \in N, andcompute z_i := val_i(s) for every i \in N and s \in St; *Compute (\mathcal{G}, \kappa);Search for an ultimately periodic execution \pi in (\mathcal{G}, \kappa) that satisfy \phi andsuch that z_i \leq pay_i(\pi) for every i \in N
```

```
AlgorithmWeak ImplementationGuess a subsidy scheme \kappa;Guess a state s \in St for every player i \in N, andcompute z_i := val_i(s) for every i \in N and s \in St; *Compute (\mathcal{G}, \kappa);Search for an ultimately periodic execution \pi in (\mathcal{G}, \kappa) that satisfy \varphi andsuch that z_i \leq pay_i(\pi) for every i \in N
```

Complexity

For LTL specifications: PSPACE-complete (bottleneck is LTL model-checking)

```
AlgorithmWeak ImplementationGuess a subsidy scheme \kappa;Guess a state s \in St for every player i \in N, andcompute z_i := val_i(s) for every i \in N and s \in St; *Compute (\mathcal{G}, \kappa);Search for an ultimately periodic execution \pi in (\mathcal{G}, \kappa) that satisfy \varphi andsuch that z_i \leq pay_i(\pi) for every i \in N
```

- For LTL specifications: PSPACE-complete (bottleneck is LTL model-checking)
- For GR(1) specifications: NP-complete (GR(1) model checking is poly, all guesses are made together)

GR(1) Spec. Complexity Bounds

Upper Bound

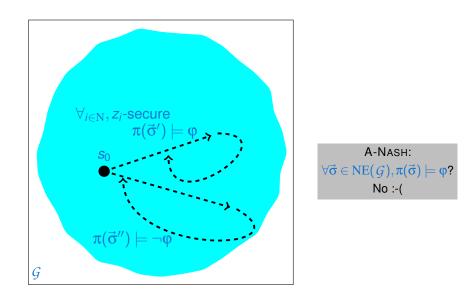
Recall that $\varphi = \bigwedge_{l=1}^{m} \mathbf{GF} \psi_l \rightarrow \bigwedge_{r=1}^{n} \mathbf{GF} \theta_r$

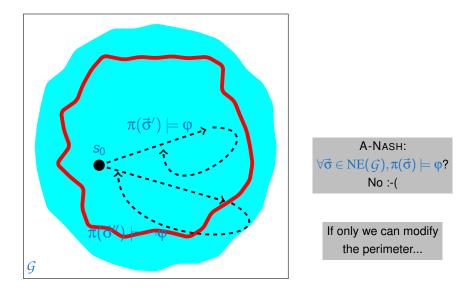
- LP(ψ_l) admits a solution if and only if there exists a path π in \mathcal{G} such that $z_i \leq \text{pay}_i(\pi)$ for every player *i* and visits $V(\psi_l)$ only *finitely many times*.
- LP($\theta_1, \ldots, \theta_n$) admits a solution if and only if there exists a path π such that $z_i \leq pay_i(\pi)$ for every player *i* and visits every $V(\theta_r)$ infinitely many times.
- there is a path π satisfying φ such that $z_i \leq pay_i(\pi)$ for every player *i* in the game if and only if one of the two linear programs defined above has a solution.

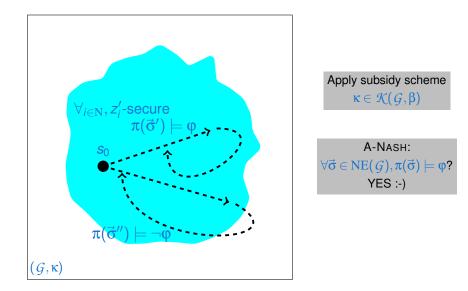
Lower Bound

If $\phi = \top$ and $\beta = 0$, then it's equivalent to checking the existence of Nash equilibrium in a mean-payoff game wich is NP-hard.

Solving Strong Implementation: Intuition







The Strong Implementation can be read as:

- There exists a subsidy scheme ... (existential guess)
- For all Nash Equilibria ... (universal guess)

The Strong Implementation can be read as:

- There exists a subsidy scheme ... (existential guess)
- For all Nash Equilibria ... (universal guess)

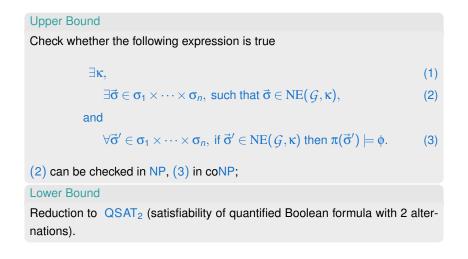
Complexity

 For LTL specifications: PSPACE-complete (alternating quantification is absorbed)

The Strong Implementation can be read as:

- There exists a subsidy scheme ... (existential guess)
- For all Nash Equilibria ... (universal guess)

- For LTL specifications: PSPACE-complete (alternating quantification is absorbed)
- For GR(1) specifications: \sum_{2}^{P} -complete (extra alternation is unavoidable)



For a given game \mathcal{G} , we say that β is the optimal budget if it is the minimum required to solve weak or strong implementation, respectively.

Definition (Optimality)

OPT-WI For a game G, compute the optimal budget β for the Weak Implementation.

OPT-SI For a game G, compute the optimal budget β for the Strong Implementation.

Theorem

By setting $z_i = \max_{s \in St} \operatorname{val}_i(s)$, we have that:

$$eta_{\mathsf{OPT}} \leq eta_{\mathsf{max}} = \sum_{i \in \mathbf{N}} z_i \cdot (|\mathbf{St}| - 1)$$

The optimal budget should be found within 0 and β_{MAX}

From previous slide, we employ binary search over the possible budgets and the weak/strong implementation routine as an oracle.

Weak Implementation Complexity

- For LTL specifications: FPSPACE-complete (binary search is absorbed)
- For GR(1) specifications: FP^{NP}-complete. Hardness via TSP problem.

Strong Implementation Complexity

- For LTL specifications: PSPACE-complete (binary search is absorbed)
- For GR(1) specifications: FP^Σ₂^P-complete. Hardness via WEIGHTED MINQSAT₂ problem.

Definition (Exactness)

EXACT-WI For a game G, check whether *b* is optimal for the Weak Implementation.

EXACT-SI For a game G, check whether *b* is the optimal for the Strong Implementation.

Definition (Uniqueness)

UOPT-WI For a game \mathcal{G} , check whether there is a unique subsidy scheme κ for the optimal budget β that solves the Weak Implementation.

UOPT-SI For a game \mathcal{G} , check whether there is a unique subsidy scheme κ for the optimal budget β that solves the Strong Implementation.

	LTL Spec.	GR(1) Spec.
Weak Implementation	PSPACE-complete	NP-complete
Strong Implementation	PSPACE-complete	Σ_2^P -complete
Opt-WI	FPSPACE-complete	FP ^{NP} -complete
Opt-SI	FPSPACE-complete	$FP^{\sum_{2}^{P}}$ -complete
EXACT-WI	PSPACE-complete	D ^P -complete
Exact-SI	PSPACE-complete	D ₂ ^P -complete
UOPT-WI	PSPACE-complete	Δ_2^P -complete
UOPT-SI	PSPACE-complete	Δ_3^P -complete

- Introduced the notion of Equilibrium Design for multi-agent games;
- · Instantiated a new class of problems via Subsidy Schemes;
- Investigated on the complexity of these problems.
- Future work:
 - Optimising social welfare: fairer NE is desirable, e.g., ultimatum game. Relatively "reliable" NE (via Weak Implementation) without climbing polynomial hierarchy ladder.
 - Relatively low complexity class → practical implementation (e.g. extension of EVE: http://eve.cs.ox.ac.uk/)