
Equilibrium Design for Concurrent Games

Julian Gutierrez1 Muhammad Najib2 Giuseppe Perelli3 Michael Wooldridge4

Monash University1

University of Kaiserslautern2

Sapienza University of Rome3

University of Oxford4

Equilibrium Design for Concurrent Games 1 / 39



Model Checking in one slide

How to check system correctness.

• System represented as mathematical structure K (e.g., Kripke
structure, Labeled transition system)

• Desired behavior represented as logic formula ϕ (e.g., Modal Logic, LTL,
CTL, CTL∗)

• The systems meets the behavior if (and only if) K |= ϕ
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Model Checking in one picture
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Correctness Problem

• How do we define correctness in multi-agent systems?

• Each agent has their own goal. This implies:

• Rationality

• Strategic behaviour

• Game theory as appropriate framework for correctness investigation
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New standard of correctness

From Model Checking ...

Decide whether a given specification is satisfied over some/all executions of
the (closed) system.

... to Equilibrium Checking!

Decide whether a given specification is satisfied over some/all rational execu-
tions of the (open) system.

Wooldridge et al. - Rational Verification: From Model Checking to
Equilibrium Checking - AAAI’16

Kupferman et al. - Synthesis with Rational Environment - AMAI’16
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Equilibrium Checking (in one slide)
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Weighted Concurrent Game Models

Games are playing on graph-like arenas of the form:
A = 〈N,Ac,St,s0, tr,λ,(wi )i∈N〉

• N (finite) set of agents;

• Ac (finite) set of actions;

• St (finite) set of states (s0 initial state);

• tr : St×AcN→ St transition function a;

• λ : St→ 2AP labelling function;

• wi : St→ Z weight functions.

aAt every state, agents take actions concurrently and move to the next state

Outcomes are infinite sequences of states and global actions

π = s0
~a0−→ s1

~a1−→ . . . ∈ (St×AcAg)ω
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Agents’ payoff

A payoff function payi for agent i is defined over outcomes

payi : (St×AcAg)ω→ R

Temporal logic specification

payi (π) =

{
1, if π |= γi

0, if π 6|= γi

,

γi ∈ LTL,GR(1), . . .

GR(1) specifications (fragment of LTL)

(GFψ1∧ . . .∧GFψm)→ (GFφ1∧ . . .∧GFφn)

Mean-Payoff

payi (π) = lim inf
n→∞

1
n

n−1

∑
j=0

wi (πj )

Agents strategically try to maximise their payoff.

Equilibrium Design for Concurrent Games 8 / 39



Agents’ payoff

A payoff function payi for agent i is defined over outcomes

payi : (St×AcAg)ω→ R

Temporal logic specification

payi (π) =

{
1, if π |= γi

0, if π 6|= γi

,

γi ∈ LTL,GR(1), . . .

GR(1) specifications (fragment of LTL)

(GFψ1∧ . . .∧GFψm)→ (GFφ1∧ . . .∧GFφn)

Mean-Payoff

payi (π) = lim inf
n→∞

1
n

n−1

∑
j=0

wi (πj )

Agents strategically try to maximise their payoff.

Equilibrium Design for Concurrent Games 8 / 39



Agents’ payoff

A payoff function payi for agent i is defined over outcomes

payi : (St×AcAg)ω→ R

Temporal logic specification

payi (π) =

{
1, if π |= γi

0, if π 6|= γi

,

γi ∈ LTL,GR(1), . . .

GR(1) specifications (fragment of LTL)

(GFψ1∧ . . .∧GFψm)→ (GFφ1∧ . . .∧GFφn)

Mean-Payoff

payi (π) = lim inf
n→∞

1
n

n−1

∑
j=0

wi (πj )

Agents strategically try to maximise their payoff.

Equilibrium Design for Concurrent Games 8 / 39



Agents’ payoff

A payoff function payi for agent i is defined over outcomes

payi : (St×AcAg)ω→ R

Temporal logic specification

payi (π) =

{
1, if π |= γi

0, if π 6|= γi

,

γi ∈ LTL,GR(1), . . .

GR(1) specifications (fragment of LTL)

(GFψ1∧ . . .∧GFψm)→ (GFφ1∧ . . .∧GFφn)

Mean-Payoff

payi (π) = lim inf
n→∞

1
n

n−1

∑
j=0

wi (πj )

Agents strategically try to maximise their payoff.

Equilibrium Design for Concurrent Games 8 / 39



Agents’ payoff

A payoff function payi for agent i is defined over outcomes

payi : (St×AcAg)ω→ R

Temporal logic specification

payi (π) =

{
1, if π |= γi

0, if π 6|= γi

,

γi ∈ LTL,GR(1), . . .

GR(1) specifications (fragment of LTL)

(GFψ1∧ . . .∧GFψm)→ (GFφ1∧ . . .∧GFφn)

Mean-Payoff

payi (π) = lim inf
n→∞

1
n

n−1

∑
j=0

wi (πj )

Agents strategically try to maximise their payoff.

Equilibrium Design for Concurrent Games 8 / 39



Some Examples: Qualitative Objectives

A qualitative game with N = {©,�}. Actions for every sx∈{0,1,2},
Ac©(sx ) = {a, ā} and Ac�(sx ) = {b, b̄}. Goals γ© = FGp, γ� = GFq.

s0

s1

p

s2

q

∗b

∗∗

∗b̄

∗∗

� wins by choosing the action b̄ every time in s0. Since (s0s2)ω |= γ�, thus
pay�((s0s2)ω) = 1 a.

aYes, I’ve made a slight abuse of notation here :|
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Some Examples: Quantitative Objectives

A quantitative game with the same set of players and set of actions. Let
wA(s1) = 1,wB(s2) = 1, and all zeros for the others.

s0

s1

s2

∗b

∗∗

∗b̄

∗∗

Again, � “wins” by choosing the action b̄ every time in s0. She gets
pay�((s0s2)ω) = 1

2 , whilst© gets pay©((s0s2)ω) = 0.
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Strategies and Plays

Strategy

Finite state machine σ =〈Q,St,q0,δ,τ〉
• Q, internal state (q0 initial state);

• δ : Q×St→ Q internal transition function;

• τ : Q→ Ac action function.

A strategy is a recipe for the agent prescribing the action to take at every
time-step of the game execution.

Play

Given a strategy assigned to every agent in A, denoted ~σ, there is a unique
possible execution π(~σ) called play.
Note that plays can only be ultimately periodic.
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Games and Nash Equilibria

A game G =〈A,pay1, . . . ,pay|N|〉 is defined by an arena and a list of payoff
functions, one per each agent.

For a game G , a strategy profile~σ is a Nash equilibrium of G if, for every
player i and strategy σ′i , we have

payi (π(~σ))≥ payi (π((~σ−i ,σ
′
i ))) .

i.e., a player cannot improve their payoff by going “alone”.
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Equilibrium Checking

Non-Emptiness

Given: Game G .
Question: Is there any Nash Equilibrium in G?

E-Nash

Given: Game G , temporal property ϕ.
Question: Is there any Nash Equilibrium~σ in G such that π(~σ) |= ϕ?

A-Nash

Given: Game G , temporal property ϕ.
Question: Does π(~σ) |= ϕ hold for every Nash Equilibrium~σ in G?
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Game types and complexities

Game type can be tuned using two different parameters:

(1) Temporal specification

(2) Players’ goals.

Different types have different computational complexities.

Specification Players’ goals Equilibrium checking

LTL LTL 2EXPTIME-complete

LTL GR(1) PSPACE-complete

LTL Mean-payoff PSPACE-complete

GR(1) GR(1) FPT

GR(1) Mean-payoff NP-complete

Gutierrez et al. - Iterated Boolean Games - Inf&Comp’15

Gutierrez et al. - On Computational Tractability for Rational Verification -
IJCAI’19
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Dealing with missing equilibria

Problem

Individually rational choices can cause outcomes that are highly undesirable,
e.g., there is no equilibrium or the temporal specification is not satisfied.

Question

The problem with this is intrinsic in the system. Can we repair it in order to
gain (desirable) equilibria?

Solution

Equilibrium Design: redesign the game such that individually rational be-
haviour leads to desired outcomes.

Almagor et al. - Repairing Multi-Player Games - CONCUR’15
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Yet Another Example

x
y

0 1

0

1

Each time an agent moves one step, it gets payoff of −1. The goal of each
agent is to visit each corners (0,0) and (1,1) in alternating fashion. To model
this goal, we reward the robots with 2 units of energy, every time they travel
from one corner to the opposite corner. Extra assumptions: at each timestep,
each robot has to make a move, that is, it cannot stay at the same position for
two consecutive timesteps, and each robot can only move at most one step.
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Yet Another Example: Converting into transition system

(0,0)

(0,1)1

(1,0)0

(0,1)0

(1,0)1

(1,1)

−1

−1

2

2

2

2

−1

−1

Transition system for player ©. The vertices are marked with (x ,y)f , where
f ∈ {0,1} is a flag to mark the last corner Player© visited (0 for (0,0) and 1
for (1,1).) a

aPayoffs are on the edges instead of vertices, however, we can easily transform the transition
system and push the payoffs to the vertices.
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Not all equilibria are equal, but some are more unequal than others

x
y

0 1

0

1

• Player© moves: S, E, N, W,...; Player �: N, W, S, E,... — this is a Nash
equilibrium, each player gets 1

2 , and a good one.

• Player© moves: S, E, W, N,...; Player �: N, W, E, S,... — this is a Nash
equilibrium, each player gets 1

2 , and a also good one.

• Player© moves: S, E, N, W,...; Player �: W, N, E, S,... — this is also a
Nash equilibrium, with payoff of 1

2 for each player, but a bad one.

How can we “nudge” the players such that the bad equilibria are eliminated—
or good equilibrium introduced, if none exists?
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Equilibrium Design via Subsidy Scheme

Subsidy scheme

Let G = (A,w1, . . . ,wn) be a Mean-payoff game.
A subsidy scheme for G is a function κ : N×St→ N.
The cost of κ is cost(κ) = ∑i∈N ∑s∈St κ(i)(s).

Subsidised game

For a Mean-payoff game G = (A,w1, . . . ,wn) and a subsidy scheme κ,
the subsidised game (G ,κ) = (A,w ′1, . . . ,w

′
n) is obtained by updating every

player’s objective with w ′i (s) = wi + κ(i)(s), for every s ∈ St.

Intuition

Designers can incentivise players to achieve outcomes that are desirable from
the temporal specification point of view.
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Equilibrium Design Implementation

Definition (Weak Implementation)

For a given game G , a temporal specification ϕ and a budget β ∈ N, find a
subsidy scheme κ with cost(κ)≤ β such that (G ,κ,ϕ) solves E-NASH

positively.

Definition (Strong Implementation)

For a given game G , a temporal specification ϕ and a budget β ∈ N, find a
subsidy scheme κ with cost(κ)≤ β such that (G ,κ,ϕ) solves A-NASH

positively.

Wooldridge et al. - Incentive engineering for Boolean games - AIJ’13
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Filling the toolbox

Theorem (NE characterisation)

s0 sk ′

~σ ∈ NE(G)
⇔

∀i∈N,payi(π(~σ))≥ zi∀i∈N,zi -secure

payj (π(~σ)) < payj (π((~σ′−j ,σ
′′
j )))

⇔
~σ′ /∈ NE(G)

π(~σ)

π(~σ′)

payj(π((~σ
′
−j ,σ

′′
j )))
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Filling the toolbox

Theorem (Counting subsidy schemes)

The number of subsidy schemes with cost bounded by β is

|K (G ,β)|= β + 1
m
·
(

β + m
β + 1

)

where m = |St| · |N|
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Solving Weak Implementation: Intuition

G

s0

∀i∈N,zi -secure

E-NASH:
∃~σ ∈ NE(G),π(~σ) |= ϕ?

No :-(

π(~σ′) |= ϕ

π(~σ′′) |= ϕ
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G

s0 E-NASH:
∃~σ ∈ NE(G),π(~σ) |= ϕ?

No :-(

If only we can modify
the perimeter...

π(~σ′) |= ϕ

π(~σ′′) |= ϕ
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Solving Weak Implementation: Intuition

(G ,κ)

s0 E-NASH:
∃~σ ∈ NE(G),π(~σ) |= ϕ?

YES :-)

Apply subsidy scheme
κ ∈K (G ,β)

∀i∈N,z ′i -secure
π(~σ′) |= ϕ

π(~σ′′) |= ϕ
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Solving Weak Implementation: Algorithm

Algorithm Weak Implementation
Guess a subsidy scheme κ;
Guess a state s ∈ St for every player i ∈ N, and
compute zi := vali (s) for every i ∈ N and s ∈ St; *

Compute (G ,κ);
Search for an ultimately periodic execution π in (G ,κ) that satisfy ϕ and
such that zi ≤ payi (π) for every i ∈ N

Complexity

• For LTL specifications: PSPACE-complete (bottleneck is LTL
model-checking)

• For GR(1) specifications: NP-complete (GR(1) model checking is poly,
all guesses are made together)
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GR(1) Spec. Complexity Bounds

Upper Bound

Recall that ϕ =
∧m

l=1 GFψl →
∧n

r=1 GFθr

• LP(ψl ) admits a solution if and only if there exists a path π in G such
that zi ≤ payi (π) for every player i and visits V (ψl ) only finitely many
times.

• LP(θ1, . . . ,θn) admits a solution if and only if there exists a path π such
that zi ≤ payi (π) for every player i and visits every V (θr ) infinitely many
times.

• there is a path π satisfying ϕ such that zi ≤ payi (π) for every player i in
the game if and only if one of the two linear programs defined above has
a solution.

Lower Bound

If ϕ = > and β = 0, then it’s equivalent to checking the existence of Nash
equilibrium in a mean-payoff game wich is NP-hard.

Equilibrium Design for Concurrent Games 27 / 39



Solving Strong Implementation: Intuition

G

s0

∀i∈N,zi -secure

A-NASH:
∀~σ ∈ NE(G),π(~σ) |= ϕ?

No :-(

π(~σ′) |= ϕ

π(~σ′′) |= ¬ϕ

Equilibrium Design for Concurrent Games 28 / 39



Solving Weak Implementation: Intuition

G

s0 A-NASH:
∀~σ ∈ NE(G),π(~σ) |= ϕ?

No :-(

If only we can modify
the perimeter...

π(~σ′) |= ϕ

π(~σ′′) |= ¬ϕ
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Solving Weak Implementation: Intuition

(G ,κ)

s0 A-NASH:
∀~σ ∈ NE(G),π(~σ) |= ϕ?

YES :-)

Apply subsidy scheme
κ ∈K (G ,β)

∀i∈N,z ′i -secure
π(~σ′) |= ϕ

π(~σ′′) |= ¬ϕ

Equilibrium Design for Concurrent Games 30 / 39



Solving Strong Implementation

Observation

The Strong Implementation can be read as:

• There exists a subsidy scheme ... (existential guess)

• For all Nash Equilibria ... (universal guess)

Complexity

• For LTL specifications: PSPACE-complete (alternating quantification is
absorbed)

• For GR(1) specifications: ΣP
2 -complete (extra alternation is unavoidable)
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GR(1) Spec. Complexity Bounds

Upper Bound

Check whether the following expression is true

∃κ, (1)

∃~σ ∈ σ1×·· ·×σn, such that~σ ∈ NE(G ,κ), (2)

and

∀~σ′ ∈ σ1×·· ·×σn, if~σ′ ∈ NE(G ,κ) then π(~σ′) |= φ. (3)

(2) can be checked in NP, (3) in coNP;

Lower Bound

Reduction to QSAT2 (satisfiability of quantified Boolean formula with 2 alter-
nations).
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Optimizing the budget

For a given game G , we say that β is the optimal budget if it is the minimum
required to solve weak or strong implementation, respectively.

Definition (Optimality)

OPT-WI For a game G , compute the optimal budget β for the Weak
Implementation.

OPT-SI For a game G , compute the optimal budget β for the Strong
Implementation.
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Toolbox refill

Theorem

By setting zi = maxs∈St vali (s), we have that:

βOPT ≤ βMAX = ∑
i∈N

zi · (|St|−1)

The optimal budget should be found within 0 and βMAX
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Solving Optimality

Observation

From previous slide, we employ binary search over the possible budgets and
the weak/strong implementation routine as an oracle.

Weak Implementation Complexity

• For LTL specifications: FPSPACE-complete (binary search is absorbed)

• For GR(1) specifications: FPNP-complete. Hardness via TSP problem.

Strong Implementation Complexity

• For LTL specifications: PSPACE-complete (binary search is absorbed)

• For GR(1) specifications: FPΣP
2 -complete. Hardness via

WEIGHTED MINQSAT2 problem.
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Checking the budget

Definition (Exactness)

EXACT-WI For a game G , check whether b is optimal for the Weak
Implementation.

EXACT-SI For a game G , check whether b is the optimal for the Strong
Implementation.
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Checking uniqueness of the scheme

Definition (Uniqueness)

UOPT-WI For a game G , check whether there is a unique subsidy
scheme κ for the optimal budget β that solves the Weak
Implementation.

UOPT-SI For a game G , check whether there is a unique subsidy
scheme κ for the optimal budget β that solves the Strong
Implementation.
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Complexity table summary

LTL Spec. GR(1) Spec.

Weak Implementation PSPACE-complete NP-complete
Strong Implementation PSPACE-complete ΣP

2 -complete

OPT-WI FPSPACE-complete FPNP-complete

OPT-SI FPSPACE-complete FPΣP
2 -complete

EXACT-WI PSPACE-complete DP -complete
EXACT-SI PSPACE-complete DP

2 -complete

UOPT-WI PSPACE-complete ∆P
2 -complete

UOPT-SI PSPACE-complete ∆P
3 -complete
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Conclusions and Future work

• Introduced the notion of Equilibrium Design for multi-agent games;

• Instantiated a new class of problems via Subsidy Schemes;

• Investigated on the complexity of these problems.

• Future work:

• Optimising social welfare: fairer NE is desirable, e.g., ultimatum game.

Relatively “reliable” NE (via Weak Implementation) without climbing

polynomial hierarchy ladder.

• Relatively low complexity class→ practical implementation (e.g. extension

of EVE: http://eve.cs.ox.ac.uk/)
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