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In game theory, mechanism design is concerned with the design of incentives so that a desired out-
come of the game can be achieved. In this paper, we study the design of incentives so that a desirable
equilibrium is obtained, for instance, an equilibrium satisfying a given temporal logic property—a
problem that we call equilibrium design. We base our study on a framework where system speci-
fications are represented as temporal logic formulae, games as quantitative concurrent game struc-
tures, and players’ goals as mean-payoff objectives. In particular, we consider system specifications
given by LTL and GR(1) formulae, and show that implementing a mechanism to ensure that a given
temporal logic property is satisfied on some/every Nash equilibrium of the game, whenever such a
mechanism exists, can be done in PSPACE for LTL properties and in NP/ΣP

2 for GR(1) specifications.
We also consider various related decision and optimisation problems, such as optimality and unique-
ness of solutions, all of which reside within the polynomial hierarchy. As an application, equilibrium
design can be used as an alternative solution to the rational synthesis and verification problems for
concurrent games with mean-payoff objectives whenever no solution exists, or as a technique to
repair, whenever possible, concurrent games with undesirable rational outcomes in an optimal way.

1 Introduction

Over the past decade, there has been increasing interest in the use of game-theoretic equilibrium con-
cepts such as Nash equilibrium in the analysis of concurrent and multi-agent systems (see, e.g., [3, 4,
8, 13, 14, 16, 23]). This work views a concurrent system as a game, with system components (agents)
corresponding to players in the game, which are assumed to be acting rationally in pursuit of their in-
dividual preferences. Preferences may be specified by associating with each player a temporal logic
goal formula, which the player desires to see satisfied, or by assuming that players receive rewards in
each state the system visits, and seek to maximise the average reward they receive (the mean payoff ). A
further possibility is to combine goals and rewards: players primarily seek the satisfaction of their goal,
and only secondarily seek to maximise their mean payoff. The key decision problems in such settings
relate to what temporal logic properties hold on computations of the system that may be generated by
players choosing strategies that form a game-theoretic (Nash) equilibrium. These problems are typically
computationally complex, since they subsume temporal logic synthesis [31]. If players have LTL goals,
for example, then checking whether an LTL formula holds on some Nash equilibrium path in a concur-
rent game is 2EXPTIME-complete [13, 15, 16], rather than only PSPACE-complete as it is the case for
model checking, certainly a computational barrier for the practical analysis and automated verification
of reactive, concurrent, and multi-agent systems modelled as multi-player games.
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Within this game-theoretic reasoning framework, a key issue is that individually rational choices can
cause outcomes that are highly undesirable, and concurrent games also fall prey to this problem. This
has motivated the development of techniques for modifying games, in order to avoid bad equilibria, or
to facilitate good equilibria. Mechanism design is the problem of designing a game such that, if players
behave rationally, then a desired outcome will be obtained [26]. Taxation and subsidy schemes are
probably the most important class of techniques used in mechanism design. They work by levying taxes
on certain actions (or providing subsidies), thereby incentivising players away from some outcomes
towards others. The present paper studies the design of subsidy schemes (incentives) for concurrent
games, so that a desired outcome (a Nash equilibrium in the game) can be obtained—a problem that we
call Equilibrium design. We model agents as synchronously executing concurrent processes, with each
agent receiving an integer payoff for every state the overall system visits; the overall payoff an agent
receives over an infinite computation path is then defined to be the mean payoff over this path. While
agents (naturally) seek to maximise their individual mean payoff, the designer of the subsidy scheme
wishes to see some logic formula satisfied, either on some or on every Nash equilibrium of the game.

With this model, we assume that the designer – an external principal – has a finite budget that is
available for making subsidies, and this budget can be allocated across agent/state pairs. By allocating
this budget appropriately, the principal can incentivise players away from some states and towards others.
Since the principal has some temporal logic goal formula, it desires to allocate subsidies so that players
are rationally incentivised to choose strategies so that the principal’s temporal logic goal formula is satis-
fied in the path that would result from executing the strategies. For this general problem, following [24],
we identify two variants of the principal’s mechanism design problem, which we refer to as WEAK IM-
PLEMENTATION and STRONG IMPLEMENTATION. In the WEAK variant, we ask whether the principal
can allocate the budget so that the goal is achieved on some computation path that would be generated by
Nash equilibrium strategies in the resulting system; in the STRONG variation, we ask whether the princi-
pal can allocate the budget so that the resulting system has at least one Nash equilibrium, and moreover
the temporal logic goal is satisfied on all paths that could be generated by Nash equilibrium strategies.
For these two problems, we consider goals specified by LTL formulae or GR(1) formulae [5], give algo-
rithms for each case, and classify the complexity of the problem. While LTL is a natural language for

LTL Spec. GR(1) Spec.

WEAK IMPLEMENTATION (WI) PSPACE-complete (Thm. 2) NP-complete (Thm. 3)

STRONG IMPLEMENTATION (SI) PSPACE-complete (Cor. 1) ΣP
2 -complete (Thm. 4)

Optimal WI FPSPACE-complete FPNP-complete

Optimal SI FPSPACE-complete FPΣP
2 -complete

Exact WI PSPACE-complete DP-complete

Exact SI PSPACE-complete DP
2 -complete

Unique Optimal WI PSPACE-complete ∆P
2 -complete

Unique Optimal SI PSPACE-complete ∆P
3 -complete

Table 1: Summary of main complexity results.
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the specification of properties of concurrent and multi-agent systems, GR(1) is an LTL fragment that can
be used to easily express several prefix-independent properties of computation paths of reactive systems,
such as ω-regular properties often used in automated formal verification. We then go on to examine
variations of these two problems, for example considering optimality and uniqueness of solutions, and
show that the complexities of all such problems lie within the polynomial hierarchy, thus making them
potentially amenable to efficient practical implementations. Table 1 summarises the main computational
complexity results in the paper. This work has been already published at CONCUR 2019 [19].

2 Preliminaries

Linear Temporal Logic. LTL [30] extends classical propositional logic with two operators, X (“next”)
and U (“until”), that can be used to express properties of paths. The syntax of LTL is defined with respect
to a set AP of atomic propositions as follows:

ϕ ::=> | p | ¬ϕ | ϕ ∨ϕ | Xϕ | ϕ Uϕ

where p ∈ AP. As commonly found in the LTL literature, we use of the following abbreviations: ϕ1 ∧
ϕ2 ≡ ¬(¬ϕ1∨¬ϕ2), ϕ1→ ϕ2 ≡ ¬ϕ1∨ϕ2, Fϕ ≡> Uϕ , and Gϕ ≡ ¬F¬ϕ .

We interpret formulae of LTL with respect to pairs (α, t), where α ∈ (2AP)ω is an infinite sequence
of atomic proposition evaluations that indicates which propositional variables are true in every time point
and t ∈ N is a temporal index into α . Formally, the semantics of LTL is given by the following rules:

(α, t) |=>
(α, t) |= p iff p ∈ αt

(α, t) |= ¬ϕ iff it is not the case that (α, t) |= ϕ

(α, t) |= ϕ ∨ψ iff (α, t) |= ϕ or (α, t) |= ψ

(α, t) |= Xϕ iff (α, t +1) |= ϕ

(α, t) |= ϕ Uψ iff for some t ′ ≥ t :
(
(α, t ′) |= ψ and

for all t ≤ t ′′ < t ′ : (α, t ′′) |= ϕ
)
.

If (α,0) |= ϕ , we write α |= ϕ and say that α satisfies ϕ .

General Reactivity of rank 1. The language of General Reactivity of rank 1, denoted GR(1), is the
fragment of LTL given by formulae written in the following form [5]:

(GFψ1∧ . . .∧GFψm)→ (GFϕ1∧ . . .∧GFϕn),

where each subformula ψi and ϕi is a Boolean combination of atomic propositions.

Mean-Payoff. For a sequence r ∈ Rω , let mp(r) be the mean-payoff value of r, that is,

mp(r) = lim inf
n→∞

avgn(r)

where, for n ∈ N\{0}, we define avgn(r) =
1
n ∑

n−1
j=0 r j, with r j the ( j+1)th element of r.

Arenas. An arena is a tuple A = 〈N,Ac,St,s0, tr,λ 〉 where N, Ac, and St are finite non-empty sets of
players (write N = |N|), actions, and states, respectively; if needed, we write Aci(s), to denote the set
of actions available to player i at s; s0 ∈ St is the initial state; tr : St× ~Ac→ St is a transition function
mapping each pair consisting of a state s ∈ St and an action profile~a ∈ ~Ac = AcN, one for each player,
to a successor state; and λ : St→ 2AP is a labelling function, mapping states to atomic propositions.
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We call an action profile~a = (a1, . . . ,an) ∈ ~Ac a decision, and denote ai the action taken by player
i. We also consider partial decisions. For a set of players C ⊆ N and action profile~a, we let~aC and~a−C

be two tuples of actions, respectively, one for all players in C and one for all players in N \C. We also
write~ai for~a{i} and~a−i for~aN\{i}. For two decisions~a and~a′, we write (~aC,~a

′
−C) to denote the decision

where the actions for players in C are taken from~a and the actions for players in N\C are taken from~a′.
A path π = (s0,~a

0),(s1,~a
1) · · · is an infinite sequence in (St× ~Ac)ω such that tr(sk,~a

k) = sk+1 for all
k. Paths are generated in the arena by each player i selecting a strategy σi that will define how to make
choices over time. We model strategies as finite state machines with output. Formally, for arena A, a
strategy σi = (Qi,q0

i ,δi,τi) for player i is a finite state machine with output (a transducer), where Qi is
a finite and non-empty set of internal states, q0

i is the initial state, δi : Qi× ~Ac→ Qi is a deterministic
internal transition function, andlet me τi : Qi→ Aci an action function. Let Stri be the set of strategies
for player i. Note that this definition implies that strategies have perfect information1 and finite memory
(although we impose no bounds on memory size).

A strategy profile ~σ = (σ1, . . . ,σn) is a vector of strategies, one for each player. As with actions, ~σi

denotes the strategy assigned to player i in profile ~σ . Moreover, by (~σB,~σ
′
C) we denote the combination

of profiles where players in disjoint B and C are assigned their corresponding strategies in ~σ and ~σ ′,
respectively. Once a state s and profile ~σ are fixed, the game has an outcome, a path in A, denoted
by π(~σ ,s). Because strategies are deterministic, π(~σ ,s) is the unique path induced by ~σ , that is, the
sequence s0,s1,s2, . . . such that

• sk+1 = tr(sk,(τ1(qk
1), . . . ,τn(qk

n))), and

• qk+1
i = δi(sk

i ,(τ1(qk
1), . . . ,τn(qk

n))), for all k ≥ 0.

Furthermore, we simply write π(~σ) for π(~σ ,s0).
Arenas define the dynamic structure of games, but lack a central aspect of a game: preferences, which

give games their strategic structure. A multi-player game is obtained from an arena A by associating each
player with a goal. We consider multi-player games with mp goals. A multi-player mp game is a tuple
G = 〈A,(wi)i∈N〉, where A is an arena and wi : St→ Z is a function mapping, for every player i, every
state of the arena into an integer number. In any game with arena A, a path π in A induces a sequence
λ (π) = λ (s0)λ (s1) · · · of sets of atomic propositions; if, in addition, A is the arena of an mp game,
then, for each player i, the sequence wi(π) = wi(s0)wi(s1) · · · of weights is also induced. Unless stated
otherwise, for a game G and a path π in it, the payoff of player i is payi(π) =mp(wi(π)).

Nash equilibrium. Using payoff functions, we can define the game-theoretic concept of Nash equi-
librium [26]. For a multi-player game G , a strategy profile ~σ is a Nash equilibrium of G if, for every
player i and strategy σ ′i for player i, we have

payi(π(~σ))≥ payi(π((~σ−i,σ
′
i ))) .

Let NE(G ) be the set of Nash equilibria of G .

3 From Mechanism Design to Equilibrium Design

We now describe the two main problems that are our focus of study. As discussed in the introduction,
such problems are closely related to the well-known problem of mechanism design in game theory.

1Mean-payoff games with imperfect information are generally undecidable [12].
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Consider a system populated by agents N, where each agent i ∈ N wants to maximise its payoff payi(·).
As in a mechanism design problem, we assume there is an external principal who has a goal ϕ that
it wants the system to satisfy, and to this end, wants to incentivise the agents to act collectively and
rationally so as to bring about ϕ . In our model, incentives are given by subsidy schemes and goals by
temporal logic formulae.

Subsidy Schemes: A subsidy scheme defines additional imposed rewards over those given by the
weight function w. While the weight function w is fixed for any given game, the principal is assumed
to be at liberty to define a subsidy scheme as they see fit. Since agents will seek to maximise their
overall rewards, the principal can incentivise agents away from performing visiting some states and
towards visiting others; if the principal designs the subsidy scheme correctly, the agents are incentivised
to choose a strategy profile ~σ such that π(~σ) |= ϕ . Formally, we model a subsidy scheme as a function
κ : N→ St→ N, where the intended interpretation is that κ(i)(s) is the subsidy in the form of a natural
number k ∈ N that would be imposed on player i if such a player visits state s ∈ St. For instance, if we
have wi(s) = 1 and κ(i)(s) = 2, then player i gets 1+ 2 = 3 for visiting such a state. For simplicity,
hereafter we write κi(s) instead of κ(i)(s) for the subsidy for player i.

Notice that having an unlimited fund for a subsidy scheme would make some problems trivial, as the
principal can always incentivise players to satisfy ϕ (provided that there is a path in A satisfying ϕ). A
natural and more interesting setting is that the principal is given a constraint in the form of budget β ∈N.
The principal then can only spend within the budget limit. To make this clearer, we first define the cost
of a subsidy scheme κ as follows.

Definition 1. Given a game G and subsidy scheme κ , we let cost(κ) = ∑i∈N ∑s∈St κi(s).

We say that a subsidy scheme κ is admissible if it does not exceed the budget β , that is, if cost(κ)≤
β . Let K (G ,β ) denote the set of admissible subsidy schemes over G given budget β ∈ N. Thus we
know that for each κ ∈K (G ,β ) we have cost(κ) ≤ β . We write (G ,κ) to denote the resulting game
after the application of subsidy scheme κ on game G . Formally, we define the application of some
subsidy scheme on a game as follows.

Definition 2. Given a game G = 〈A,(wi)i∈N〉 and an admissible subsidy scheme κ , we define (G ,κ) =
〈A,(w′i)i∈N〉, where w′i(s) = wi(s)+κi(s), for each i ∈ N and s ∈ St.

We now come to the main question(s) that we consider in the remainder of the paper. We ask whether
the principal can find a subsidy scheme that will incentivise players to collectively choose a rational
outcome (a Nash equilibrium) that satisfies its temporal logic goal ϕ . We call this problem equilibrium
design. Following [24], we define two variants of this problem, a weak and a strong implementation of
the equilibrium design problem. The formal definition of the problems and the analysis of their respective
computational complexity are presented in the next sections.

4 Equilibrium Design: Weak Implementation

In this section, we study the weak implementation of the equilibrium design problem, a logic-based
computational variant of the principal’s mechanism design problem in game theory. We assume that
the principal has full knowledge of the game G under consideration, that is, the principal uses all the
information available of G to find the appropriate subsidy scheme, if it exists. We now formally define
the weak variant of the implementation problem, and study its respective computational complexity, first
with respect to goals (specifications) given by LTL formulae and then with respect to GR(1) formulae.
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Let WI(G ,ϕ,β ) denote the set of subsidy schemes over G given budget β that satisfy a formula ϕ

in at least one path π generated by ~σ ∈ NE(G ). Formally

WI(G ,ϕ,β ) = {κ ∈K (G ,β ) : ∃~σ ∈ NE(G ,κ) s.t. π(~σ) |= ϕ}.

Definition 3 (WEAK IMPLEMENTATION). Given a game G , formula ϕ , and budget β :

Is it the case that WI(G ,ϕ,β ) 6=∅?

In order to solve WEAK IMPLEMENTATION, we first characterise the Nash equilibria of a multi-
player concurrent game in terms of punishment strategies. To do this in our setting, we recall the notion
of secure values for mean-payoff games [32].

For a player i and a state s ∈ St, by puni(s) we denote the punishment value of i over s, that is, the
maximum payoff that i can achieve from s, when all other players behave adversarially. Such a value can
be computed by considering the corresponding two-player zero-sum mean-payoff game [34]. Thus, it is
in NP∩coNP, and note that both player i and coalition N\{i} can achieve the optimal value of the game
using memoryless strategies. Then, for a player i and a value z ∈R, a pair (s,~a) is z-secure for player i if
puni(tr(s,(~a−i,a

′
i)))≤ z for every a′i ∈ Ac. Write puni(G ) for the punishment values for player i in G .

Theorem 1. For every mp game G and ultimately periodic path π = (s0,~a0),(s1,~a
1), . . ., the following

are equivalent:

1. There is ~σ ∈ NE(G ) such that π = π(~σ ,s0);

2. There exists z ∈ RN, where zi ∈ puni(G ) such that, for every i ∈ N

(a) for all k ∈ N, the pair (sk,~a
k) is zi-secure for i, and

(b) zi ≤ payi(π).

The characterisation of Nash Equilibria provided in Theorem 1 will allow us to turn the WEAK

IMPLEMENTATION problem into a path finding problem over (G ,κ). On the other hand, with respect to
the budget β that the principal has at its disposal, the definition of subsidy scheme function κ implies
that the size of K (G ,β ) is bounded, and particularly, it is bounded by β and the number of agents and
states in the game G , in the following way.

Proposition 1. Given a game G with |N| players and |St| states and budget β , it holds that

|K (G ,β )|= β +1
m

(
β +m
β +1

)
,

with m = |N×St| being the number of pairs of possible agents and states.

From Proposition 1 we derive that the number of possible subsidy schemes is polynomial in the
budget β and singly exponential in both the number of agents and states in the game. At this point,
solving WEAK IMPLEMENTATION can be done with the following procedure:

1. Guess:

• a subsidy scheme κ ∈K (G ,β ),
• a state s ∈ St for every player i ∈ N, and
• punishment memoryless strategies (~σ−1, . . . ,~σ−n) for all players i ∈ N;

2. Compute (G ,κ);

3. Compute z ∈ RN;
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4. Compute the game (G ,κ)[z] by removing the states s such that puni(s)≤ zi for some player i and
the transitions (s,~a−i) that are not zi secure for player i;

5. Check whether there exists an ultimately periodic path π in (G ,κ)[z] such that π |= ϕ and zi ≤
payi(π) for every player i ∈ N.

Since the set K (G ,β ) is finitely bounded (Proposition 1), and punishment strategies only need to be
memoryless, thus also finitely bounded, clearly step 1 can be guessed nondeterministically. Moreover,
each of the guessed elements is of polynomial size, thus this step can be done (deterministically) in
polynomial space. Step 2 clearly can be done in polynomial time. Step 3 can also be done in polynomial
time since, given (~σ−1, . . . ,~σ−n), we can compute z solving |N| one-player mean-payoff games, one for
each player i [34, Thm. 6]. For step 5, we will use Theorem 1 and consider two cases, one for LTL
specifications and one for GR(1) specifications. Firstly, for LTL specifications, consider the formula
ϕWI := ϕ ∧

∧
i∈N(mp(i)≥ zi) written in LTLLim [7], an extension of LTL where statements about mean-

payoff values over a given weighted arena can be made.2 The semantics of the temporal operators of
LTLLim is just like the one for LTL over infinite computation paths π = s0,s1,s3. . . .. On the other hand,
the meaning of mp(i)≥ zi is simply that such an atomic formula is true if, and only if, the mean-payoff
value of π with respect to player i is greater or equal to zi, a constant real value; that is, mp(i) ≥ zi is
true in π if and only if payi(π) = mp(wi(π)) is greater or equal than constant value zi. Formula ϕWI
corresponds exactly to 2(b) in Theorem 1. Furthermore, since every path in (G ,κ)[z] satisfies condition
2(a) of Theorem 1, every computation path of (G ,κ)[z] that satisfies ϕWI is a witness to the WEAK

IMPLEMENTATION problem.

Theorem 2. WEAK IMPLEMENTATION with LTL specifications is PSPACE-complete.

Proof. Membership follows from the procedure above and the fact that model checking for LTLLim is
PSPACE-complete [7]. Hardness follows from the fact that LTL model checking is a special case of
WEAK IMPLEMENTATION. For instance, consider the case in which all weights for all players are set to
the same value, say 0, and the principal has budget β = 0.

Case with GR(1) specifications. One of the main bottlenecks of our procedure to solve WEAK IMPLE-
MENTATION lies in step 5, where we solve an LTLLim model checking problem. To reduce the complexity
of our decision procedure, we consider WEAK IMPLEMENTATION with the specification ϕ expressed in
the GR(1) sublanguage of LTL. With this specification language, the path finding problem can be solved
without model-checking the LTLLim formula given before. In order to do this, we can define a linear
program (LP) such that the LP has a solution if and only if WI(G ,ϕ,β ) 6= ∅. From our previous pro-
cedure, observe that step 1 can be done nondeterministically in polynomial time, and steps 2–4 can be
done (deterministically) in polynomial time. Furthermore, using LP, we also can check step 5 determin-
istically in polynomial time. For the lower-bound, we use [32] and note that if ϕ = > and β = 0, then
the problem reduces to checking whether the underlying mp game has a Nash equilibrium. Based on the
above observations, we have the following result.

Theorem 3. WEAK IMPLEMENTATION with GR(1) specifications is NP-complete.

Proof sketch. For the upper bound, we define an LP of size polynomial in (G ,κ) having a solution if and
only if there is an ultimately periodic path π such that zi ≤ payi(π) and satisfies the GR(1) specification.
Recall that ϕ has the following form ϕ =

∧m
l=1 GFψl →

∧n
r=1 GFθr, and let V (ψl) and V (θr) be the

subset of states in (G ,κ) that satisfy the Boolean combinations ψl and θr, respectively. Property ϕ is

2The formal semantics of LTLLim can be found in [7]. We prefer to give only an informal description here.
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satisfied on π if, and only if, either π visits every state in V (θr) infinitely often or some of the states in
V (ψl) only a finite number of times. For the game (G ,κ)[z], let W = (V,E,(wa)a∈N) be the underlying
multi-weighted graph, and for every edge e ∈ E introduce a variable xe. Informally, the value of xe

is the number of times that e is used on a cycle. Formally, let src(e) = {v ∈ V : ∃we = (v,w) ∈ E};
trg(e) = {v ∈ V : ∃we = (w,v) ∈ E}; out(v) = {e ∈ E : src(e) = v}; and in(v) = {e ∈ E : trg(e) = v}.
Now, consider ψl for some 1≤ l ≤ m, and define the following linear program LP(ψl):

Eq1: xe ≥ 0 for each edge e — a basic consistency criterion;

Eq2: Σe∈Exe ≥ 1 — at least one edge is chosen;

Eq3: for each a ∈ N, Σe∈Ewa(src(e))xe ≥ 0 — total sum of any solution is non-negative;

Eq4: Σsrc(e)∩V (ψl)6= /0xe = 0 — no state in V (ψl) is in the cycle associated with the solution;

Eq5: for each v ∈V , Σe∈out(v)xe = Σe∈in(v)xe — this condition says that the number of times one enters
a vertex is equal to the number of times one leaves that vertex.

LP(ψl) has a solution if and only if there is a path π in G such that zi ≤ payi(π) for every player i and
visits V (ψl) only finitely many times. Consider now the linear program LP(θ1, . . . ,θn) defined as follows.
Eq1–Eq3 as well as Eq5 are as in LP(ψl), and:

Eq4: for all 1≤ r≤ n, Σsrc(e)∩V (θr)6= /0xe ≥ 1 — this condition says that, for every V (θr), at least one state
in V (θr) is in the cycle associated with the solution of the linear program.

In this case, LP(θ1, . . . ,θn) has a solution if and only if there exists a path π such that zi ≤ payi(π) for
every player i and visits every V (θr) infinitely many times. Since the constructions above are polynomial
in the size of both (G ,κ) and ϕ , we can conclude it is possible to check in NP the statement that there is
a path π satisfying ϕ such that zi ≤ payi(π) for every player i in the game if and only if one of the two
linear programs defined above has a solution. For the lower-bound, we use [32] as discussed before.

We now turn our attention to the strong implementation of the equilibrium design problem. As in
this section, we first consider LTL specifications and then GR(1) specifications.

5 Equilibrium Design: Strong Implementation

Although the principal may find WI(G ,ϕ,β ) 6= ∅ to be good news, it might not be good enough. It
could be that even though there is a desirable Nash equilibrium, the others might be undesirable. This
motivates us to consider the strong implementation variant of equilibrium design. Intuitively, in a strong
implementation, we require that every Nash equilibrium outcome satisfies the specification ϕ , for a non-
empty set of outcomes. Then, let SI(G ,ϕ,β ) denote the set of subsidy schemes κ given budget β over G
such that:

1. (G ,κ) has at least one Nash equilibrium outcome,

2. every Nash equilibrium outcome of (G ,κ) satisfies ϕ .

Formally we define it as follows:

SI(G ,ϕ,β ) = {κ ∈K (G ,β ) : NE(G ,κ) 6=∅∧∀~σ ∈ NE(G ,κ) s.t. π(~σ) |= ϕ}.

This gives us the following decision problem:

Definition 4 (STRONG IMPLEMENTATION). Given a game G , formula ϕ , and budget β :
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Is it the case that SI(G ,ϕ,β ) 6=∅?

STRONG IMPLEMENTATION can be solved with a 5-step procedure where the first four steps are as
in WEAK IMPLEMENTATION, and the last step (step 5) is as follows:

5 Check whether:

(a) there is no ultimately periodic path π in (G ,κ)[z] such that zi ≤ payi(π) for each i ∈ N;
(b) there is an ultimately periodic path π in (G ,κ)[z] such that π |= ¬ϕ and zi ≤ payi(π), for

each i ∈ N.

For step 5, observe that a positive answer to 5(a) or 5(b) is a counterexample to κ ∈ SI(G ,ϕ,β ).
Then, to carry out this procedure for the STRONG IMPLEMENTATION problem with LTL specifications,
consider the following LTLLim formulae:

ϕ∃ =
∧
i∈N

(mp(i)≥ zi);

ϕ∀ = ϕ∃→ ϕ.

Notice that the expression NE(G ,κ) 6=∅ can be expressed as “there exists a path π in G that satisfies
formula ϕ∃”. On the other hand, the expression ∀~σ ∈NE(G ,κ) such that π(~σ) |= ϕ can be expressed as
“for every path π in G , if π satisfies formula ϕ∃, then π also satisfies formula ϕ”. Thus, using these two
formulae, we obtain the following result.

Corollary 1. STRONG IMPLEMENTATION with LTL specifications is PSPACE-complete.

Proof. Membership follows from the fact that step 5(a) can be solved by existential LTLLim model check-
ing, whereas step 5(b) by universal LTLLim model checking—both clearly in PSPACE by Savitch’s the-
orem. Hardness is similar to the construction in Theorem 2.

Case with GR(1) specifications. Notice that the first part, i.e., NE(G ,κ) 6=∅ can be solved in NP [32].
For the second part, observe that

∀~σ ∈ NE(G ,κ) such that π(~σ) |= ϕ

is equivalent to
¬∃~σ ∈ NE(G ,κ) such that π(~σ) |= ¬ϕ.

Thus we have

¬ϕ =
m∧

l=1

GFψl ∧¬
( n∧

r=1

GFθr
)
.

To check this, we modify the LP in Theorem 3. Specifically, we modify Eq4 in LP(θ1, . . . ,θn) to encode
the θ -part of ¬ϕ . Thus, we have the following equation in LP′(θ1, . . . ,θn):

Eq4: there exists r, 1≤ r ≤ n, Σsrc(e)∩V (θr)6= /0xe = 0 — this condition ensures that at least one set V (θr)
does not have any state in the cycle associated with the solution.

In this case, LP′(θ1, . . . ,θn) has a solution if and only if there is a path π such that zi ≤ payi(π) for
every player i and, for at least one V (θr), its states are visited only finitely many times. Thus, we have
a procedure that checks if there is a path π that satisfies ¬ϕ such that zi ≤ payi(π) for every player i,
if and only if both linear programs have a solution. Using this new construction, we can now prove the
following result.
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Theorem 4. STRONG IMPLEMENTATION with GR(1) specifications is ΣP
2 -complete.

Proof sketch. For membership, observe that by rearranging the problem statement, we have the following
question: Check whether the following expression is true

∃κ ∈K (G ,β ), (1)

∃~σ ∈ σ1×·· ·×σn, such that ~σ ∈ NE(G ,κ), (2)

and

∀~σ ′ ∈ σ1×·· ·×σn, if ~σ ′ ∈ NE(G ,κ) then π(~σ ′) |= ϕ. (3)

Statement (2) can be checked in NP (Theorem 1), whereas verifying statement (3) is in coNP; to see
this, notice that we can rephrase (3) as follows: ¬∃z ∈ {puni(s) : s ∈ St}N such that both LP(ψl) and
LP′(θ1, . . . ,θn) have a solution in (G ,κ)[z]. Thus, membership in ΣP

2 follows. We prove hardness via
a reduction from QSAT2 (satisfiability of quantified Boolean formulae with 2 alternations), which is
known to be ΣP

2 -complete [27].

6 Other Results

Since the power of the principal is limited by its budget, and because from the point of view of the
system, it may be associated with a reward (e.g., money, savings, etc.) or with the inverse of the amount
of a finite resource (e.g., time, energy, etc.) an obvious question is asking about optimal solutions. This
leads us to optimisation variations of the problems we have studied. In this case, we ask what is the
least budget that the principal needs to ensure that the implementation problems have positive solutions.
For the rest of this section, we only consider GR(1) specifications, since with LTL specifications, the
complexities are absorbed by the LTL model checking procedure.

Because the search space in these games is bounded, with the use of WEAK IMPLEMENTATION and
STRONG IMPLEMENTATION as oracles, we can iterate through every instance and return the smallest β

such that WI(G ,ϕ,β ) 6=∅. More precisely, we can find the smallest budget β such that WI(G ,ϕ,β ) 6=∅
by checking every possible value for β , which lies between 0 and 2n, where n is the length of the
encoding of the instance. Since we need logarithmically many calls to the oracle, in the end we obtain an
efficient searching procedure that runs in polynomial time. Thus, membership of the optimality problem
for WEAK IMPLEMENTATION and STRONG IMPLEMENTATION in FPNP and FPΣP

2 follows. Hardness
for optimal WEAK IMPLEMENTATION can be obtained from a reduction to TSP COST (the optimal
travelling salesman problem), which is FPNP-complete [27]. For optimal STRONG IMPLEMENTATION,
hardness is obtained by a reduction to WEIGHTED MINQSAT2 [19].

Other variants of the problem are the exactness and uniqueness of solutions. In the former case, in
addition to G and ϕ , we are also given an integer b, and ask whether it is indeed the smallest amount of
budget that the principal has to spend for some optimal weak implementation. For exact WEAK IMPLE-
MENTATION, membership in DP follows from the fact that an input is a “yes” instance of exact WEAK

IMPLEMENTATION if and only if it is a “yes” instance of WEAK IMPLEMENTATION and a “yes” instance
of WEAK IMPLEMENTATION COMPLEMENT (the problem where one asks whether WI(G ,ϕ,β ) = ∅).
Hardness is obtained using a reduction from EXACT TSP [27, 28]. For exact STRONG IMPLEMEN-
TATION, membership is analogous to that of exact WEAK IMPLEMENTATION. Hardness immediately
follows from the hardness of STRONG IMPLEMENTATION and its complement [1, Lemma 3.2].

For uniqueness—that is, whether there exists only one optimal solution—, ∆P
2 and ∆P

3 membership
for unique WEAK IMPLEMENTATION and STRONG IMPLEMENTATION, respectively, follows from the
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fact that we can use the procedure for the optimality problem to find the optimal solution, and use NP
and ΣP

2 oracles, respectively, to guess two distinct subsidy schemes. Hardness follows from the hardness
of their respective optimal problem counterpart [22]. A summary of all these results can be found in
Table 1, and a more detailed exposition of this section can be found at [19].

7 Conclusions & Related and Future Work

This work stems from a desire to understand the temporal logic behaviour of concurrent and multi-agent
systems composed of simple rational agents who only have quantitative concerns about the overall sys-
tem. The preferences of these agents are somewhat simpler than those typically studied in the rational
verification framework [16], where agents also have temporal logic goals. Here we have decoupled rea-
soning about the overall system. While we assume that agents only have quantitative concerns, it is an
external principal who will be interested in qualitative concerns, expressed using a temporal logic for-
mula. This is a complexity-wise more tractable setting than that in [16] which underlies very interesting
connections with Economic theory, Computer Science, and Artificial Intelligence.

Equilibrium design vs. mechanism design – connections with Economic theory. Although equilib-
rium design is closely related to mechanism design, as typically studied in game theory [21], the two are
not exactly the same. Two key features in mechanism design are the following. Firstly, in a mechanism
design problem, the designer is not given a game structure, but instead is asked to provide one; in that
sense, a mechanism design problem is closer to a rational synthesis problem [13, 15]. Secondly, in a
mechanism design problem, the designer is only interested in the game’s outcome, which is given by the
payoffs of the players in the game; however, in equilibrium design, while the designer is interested in
the payoffs of the players as these may need to be perturbed by its budget, the designer is also interested
– and in fact primarily interested – in the satisfaction of a temporal logic goal specification, which the
players in the game do not take into consideration when choosing their individual rational choices; in
that sense, equilibrium design is closer to rational verification [16] than to mechanism design. Thus,
equilibrium design is a new computational problem that sits somewhere in the middle between mecha-
nism design and rational verification/synthesis. Technically, in equilibrium design we go beyond rational
synthesis and verification through the additional design of subsidy schemes for incentivising behaviours
in a concurrent and multi-agent system, but we do not require such subsidy schemes to be incentive
compatible mechanisms, as in mechanism design theory, since the principal may want to reward only a
group of players in the game so that its temporal logic goal is satisfied, while rewarding other players in
the game in an unfair way – thus, leading to a game with a suboptimal social welfare measure. In this
sense, equilibrium design falls short with respect to the more demanding social welfare requirements
often found in mechanism design theory.

Equilibrium design vs. rational verification – connections with Computer science. Typically, in
rational synthesis and verification [13, 15, 16, 23] we want to check whether a property is satisfied on
some/every Nash equilibrium computation run of a reactive, concurrent, and multi-agent system. These
verification problems are primarily concerned with qualitative properties of a system, while assuming ra-
tionality of system components. However, little attention is paid to quantitative properties of the system.
This drawback has been recently identified and some work has been done to cope with questions where
both qualitative and quantitative concerns are considered [3, 6, 9, 10, 11, 17, 20, 19, 33]. Equilibrium
design is new and different approach where this is also the case. More specifically, as in a mechanism
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design problem, through the introduction of an external principal – the designer in the equilibrium de-
sign problem – we can account for overall qualitative properties of a system (the principal’s goal given
by an LTL or a GR(1) specification) as well as for quantitative concerns (optimality of solutions con-
strained by the budget to allocate additional rewards/resources). Our framework also mixes qualitative
and quantitative features in a different way: while system components are only interested in maximising
a quantitative payoff, the designer is primarily concerned about the satisfaction of a qualitative (logic)
property of the system, and only secondarily about doing it in a quantitatively optimal way.

Equilibrium design vs. repair games and normative systems – connections with AI. In recent years,
there has been an interest in the analysis of rational outcomes of multi-agent systems modelled as multi-
player games. This has been done both with modelling and with verification purposes. In those multi-
agent settings, where AI agents can be represented as players in a multi-player game, a focus of interest is
on the analysis of (Nash) equilibria in such games [8, 16]. However, it is often the case that the existence
of Nash equilibria in a multi-player game with temporal logic goals may not be guaranteed [15, 16].
For this reason, there has been already some work on the introduction of desirable Nash equilibria in
multi-player games [2, 29]. This problem has been studied as a repair problem [2] in which either the
preferences of the players (given by winning conditions) or the actions available in the game are modified;
the latter one also being achieved with the use of normative systems [29]. In equilibrium design, we do
not directly modify the preferences of agents in the system, since we do not alter their goals or choices
in the game, but we indirectly influence their rational behaviour by incentivising players to visit, or to
avoid, certain states of the overall system. We studied how to do this in an (individually) optimal way
with respect to the preferences of the principal in the equilibrium design problem. However, this may
not always be possible, for instance, because the principal’s temporal logic specification goal is just not
achievable, or because of constraints given by its limited budget.

Future work: social welfare requirements and practical implementation. As discussed before,
a key difference with mechanism design is that social welfare requirements are not considered [25].
However, a benevolent principal might not see optimality as an individual concern, and instead consider
the welfare of the players in the design of a subsidy scheme. In that case, concepts such as the utilitarian
social welfare may be undesirable as the social welfare maximising the payoff received by players might
allocate all the budget to only one player, and none to the others. A potentially better option is to improve
fairness in the allocation of the budget by maximising the egalitarian social welfare. Finally, given that
the complexity of equilibrium design is much better than that of rational synthesis/verification, we should
be able to have efficient implementations, for instance, as an extension of EVE [18].
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