Verification of Cooperative and Concurrent Multi-Player Mean-Payoff Games

Muhammad Najib
Heriot-Watt University

To appear in CSL'24
Joint work with: Julian Gutierrez (Monash), Anthony W. Lin (Kaiserslautern-Landau), Thomas Steeples and Mike Wooldridge (Oxford)

Games and AI

- Long and illustrious history: starting from Turing's 'imitation game'
- Concurrent multi-player games for modelling multi-agent AI systems (ATL, PRISM,...)
- played in infinite sequence of rounds
- multiple players/agents ${ }^{1}$ chooses actions simultaneously
- each player has a preference/goal

[^0]
Games and AI

- Long and illustrious history: starting from Turing's 'imitation game'
- Concurrent multi-player games for modelling multi-agent AI systems (ATL, PRISM,...)
- played in infinite sequence of rounds
- multiple players/agents ${ }^{1}$ chooses actions simultaneously
- each player has a preference/goal
- Concurrent multi-player mean-payoff games:
- Played over a weighted graph
- A play generates an infinite sequence of numbers (weights): $r^{0} r^{1} r^{2} \cdots \in \mathbb{R}^{\omega}$
- Players want to maximise a mean-payoff: $\mathrm{mp}(r)=\lim \inf _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} r^{i}$

[^1]
Games and AI

- Long and illustrious history: starting from Turing's 'imitation game'
- Concurrent multi-player games for modelling multi-agent AI systems (ATL, PRISM,...)
- played in infinite sequence of rounds
- multiple players/agents ${ }^{1}$ chooses actions simultaneously
- each player has a preference/goal
- Concurrent multi-player mean-payoff games:
- Played over a weighted graph
- A play generates an infinite sequence of numbers (weights): $r^{0} r^{1} r^{2} \cdots \in \mathbb{R}^{\omega}$
- Players want to maximise a mean-payoff: $\mathrm{mp}(r)=\lim \inf _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} r^{i}$
- Much research has been done on (2-player) zero-sum, (multi-player) general sum in non-cooperative settings (NE, SPNE)

[^2]
Cooperative AI

- Recently emerged as a prominent topic ${ }^{2,3,4}$
- Agents can communicate (negotiate, reach agreements,...) and benefit from cooperation
- Use mean-payoff games to model resource-sensitive cooperative AI systems
- What outcomes can/cannot arise given the possibility of cooperation? (rational verification)
- To predict the outcomes, use solution concept from cooperative game theory

[^3]
Concurrent multi-player mean-payoff games

Concurrent multi-player mean-payoff game $\mathcal{G}=\left(A,\left(w_{i}\right)_{i \in N}\right)$

- Arena $A=\left\langle\mathrm{N},\left\{\mathrm{Ac}_{i}\right\}_{i \in \mathrm{~N}}, \mathrm{St}, s_{\text {init }}\right.$, tr, lab \rangle
- weight function $w_{i}: S t \rightarrow \mathbb{Z}$ is a mapping, for every player i, every state of the arena into an integer number.

Player i's Payoff

For an infinite sequence of weights, $w_{i}=w_{i}^{0} w_{i}^{1} w_{i}^{2} \cdots \in \mathbb{Z}^{\omega}$, define the payoff pay $_{i}\left(w_{i}\right)=m p\left(w_{i}\right)=\liminf _{n \rightarrow \infty} \frac{1}{n} \sum_{t=0}^{n-1} w_{i}^{t}$.

Strategies

- A strategy for i can be understood abstractly as a function $\sigma_{i}: \mathrm{St}^{+} \rightarrow \mathrm{Ac}_{i}$ which maps sequences (or histories) of states into a chosen action for player i.
- memoryless strategy $\sigma_{i}: S t \rightarrow A c_{i}$ chooses an action based only on the current state of the environment
- finite-memory strategy represented by a finite state machine $\sigma_{i}=\left(Q_{i}, q_{i}^{0}, \delta_{i}, \tau_{i}\right)$,
- Q_{i} is a finite and non-empty set of internal states
- q_{i}^{0} is the initial state
- $\delta_{i}: Q_{i} \times \mathrm{St} \rightarrow Q_{i}$ is a deterministic internal transition function
- $\tau_{i}: Q_{i} \rightarrow A c_{i}$ an action function

Strategies

- A strategy for i can be understood abstractly as a function $\sigma_{i}: \mathrm{St}^{+} \rightarrow \mathrm{Ac}_{i}$ which maps sequences (or histories) of states into a chosen action for player i.
- memoryless strategy $\sigma_{i}: \mathrm{St} \rightarrow \mathrm{Ac}_{i}$ chooses an action based only on the current state of the environment
- finite-memory strategy represented by a finite state machine $\sigma_{i}=\left(Q_{i}, q_{i}^{0}, \delta_{i}, \tau_{i}\right)$,
- Q_{i} is a finite and non-empty set of internal states
- q_{i}^{0} is the initial state
- $\delta_{i}: Q_{i} \times S t \rightarrow Q_{i}$ is a deterministic internal transition function
- $\tau_{i}: Q_{i} \rightarrow \mathrm{Ac}_{i}$ an action function

In this work, we assume that players have finite but unbounded memory ${ }^{\text {a }}$ strategies.

1. Practically realisable
2. sufficient to implement LTL specifications
[^4]
Strategies in games

- When each player has chosen a strategy we have a strategy profile $\vec{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$
- Given a game $\mathcal{G}=\left\langle A,\left(w_{i}\right)_{i \in \mathrm{~N}}\right\rangle$ and a strategy profile $\vec{\sigma}$, an outcome $\pi(\vec{\sigma})$ in A induces
- a sequence $\operatorname{lab}(\pi(\vec{\sigma}))=\operatorname{lab}\left(s^{0}\right) \operatorname{lab}\left(s^{1}\right) \cdots$ of sets of atomic propositions
- and for each player i, the sequence $w_{i}(\pi(\vec{\sigma}))=w_{i}\left(s^{0}\right) w_{i}\left(s^{1}\right) \cdots$ of weights
- The payoff of player i is pay $_{i}(\vec{\sigma})=m p\left(w_{i}(\pi(\vec{\sigma}))\right)$

Solution Concepts

- Non-cooperative: NE
- a strategy profile from which no individual player has any incentive to unilaterally deviate
- Cooperative: the core (introduced by Aumann (2005 Nobel in Economics) ${ }^{5}$)
- the set of strategy profiles from which no coalition has any incentive to deviate

[^5]
Solution Concepts

- Non-cooperative: NE
- a strategy profile from which no individual player has any incentive to unilaterally deviate
- Cooperative: the core (introduced by Aumann (2005 Nobel in Economics) ${ }^{5}$)
- the set of strategy profiles from which no coalition has any incentive to deviate

```
strategy in the core
```



```
counter-strategy profile }\mp@subsup{\vec{\sigma}}{-C}{\prime}\mathrm{ such that pay }(\vec{\sigma})\geq\mp@subsup{\mathrm{ pay }}{i}{}(\mp@subsup{\vec{\sigma}}{C}{\prime},\mp@subsup{\vec{\sigma}}{-C}{\prime}
```

[^6]
Solution Concepts

- Non-cooperative: NE
- a strategy profile from which no individual player has any incentive to unilaterally deviate
- Cooperative: the core (introduced by Aumann (2005 Nobel in Economics) ${ }^{5}$)
- the set of strategy profiles from which no coalition has any incentive to deviate

```
strategy in the core
\vec{\sigma}\in\operatorname{Core(G) if for every coalition C\subseteqN and (partial) strategy profile 杵', there is some (partial)}
counter-strategy profile }\mp@subsup{\vec{\sigma}}{-C}{\prime}\mathrm{ such that pay }(\vec{\sigma})\geq\mp@subsup{\mathrm{ pay }}{i}{}(\mp@subsup{\vec{\sigma}}{C}{\prime},\mp@subsup{\vec{\sigma}}{-C}{\prime}
```

Main differences:

- Players can act in coalitions (as opposed to individuals)
- Counter-strategy can be different from the original strategy

[^7]
An example: coordination game

- $\mathrm{N}=\{1,2\}$
- Players are initially in m
- player 1 gets 1 when both chooses L
- player 2 gets 1 when both chooses R

An example: coordination game

- σ_{1} prescribes L^{ω}, σ_{2} prescribes R^{ω}
- $\left(\sigma_{1}, \sigma_{2}\right)$ is a NE, albeit a "bad" one as
$\operatorname{pay}_{1}\left(\left(\sigma_{1}, \sigma_{2}\right)\right)=\operatorname{pay}_{2}\left(\left(\sigma_{1}, \sigma_{2}\right)\right)=0$

An example: coordination game

- σ_{1} prescribes L^{ω}, σ_{2} prescribes R^{ω}
- $\left(\sigma_{1}, \sigma_{2}\right)$ is a NE, albeit a "bad" one as $\operatorname{pay}_{1}\left(\left(\sigma_{1}, \sigma_{2}\right)\right)=\operatorname{pay}_{2}\left(\left(\sigma_{1}, \sigma_{2}\right)\right)=0$
- But $\left(\sigma_{1}, \sigma_{2}\right)$ is not in the core: $\{1,2\}$ can agree to alternately go L and R $\sigma_{1}^{\prime}, \sigma_{2}^{\prime}$ prescribe $(L R)^{\omega}$
- $\operatorname{pay}_{1}\left(\left(\sigma_{1}^{\prime}, \sigma_{2}^{\prime}\right)\right)=\operatorname{pay}_{2}\left(\left(\sigma_{1}^{\prime}, \sigma_{2}^{\prime}\right)\right)=\frac{1}{4}$

An example: coordination game

- σ_{1} prescribes L^{ω}, σ_{2} prescribes R^{ω}
- $\left(\sigma_{1}, \sigma_{2}\right)$ is a NE, albeit a "bad" one as $\operatorname{pay}_{1}\left(\left(\sigma_{1}, \sigma_{2}\right)\right)=\operatorname{pay}_{2}\left(\left(\sigma_{1}, \sigma_{2}\right)\right)=0$
- But $\left(\sigma_{1}, \sigma_{2}\right)$ is not in the core: $\{1,2\}$ can agree to alternately go L and R $\sigma_{1}^{\prime}, \sigma_{2}^{\prime}$ prescribe $(L R)^{\omega}$

- $\operatorname{pay}_{1}\left(\left(\sigma_{1}^{\prime}, \sigma_{2}^{\prime}\right)\right)=\operatorname{pay}_{2}\left(\left(\sigma_{1}^{\prime}, \sigma_{2}^{\prime}\right)\right)=\frac{1}{4}$
$\left(\sigma_{1}^{\prime}, \sigma_{2}^{\prime}\right)$ corresponds to the liveness property $\varphi:=\mathrm{GF} / \wedge \mathrm{GF} r$
i.e., $\pi\left(\left(\sigma_{1}^{\prime}, \sigma_{2}^{\prime}\right)\right) \models \varphi$.

An example: coordination game

- σ_{1} prescribes L^{ω}, σ_{2} prescribes R^{ω}
- $\left(\sigma_{1}, \sigma_{2}\right)$ is a NE, albeit a "bad" one as $\operatorname{pay}_{1}\left(\left(\sigma_{1}, \sigma_{2}\right)\right)=\operatorname{pay}_{2}\left(\left(\sigma_{1}, \sigma_{2}\right)\right)=0$
- But $\left(\sigma_{1}, \sigma_{2}\right)$ is not in the core: $\{1,2\}$ can agree to alternately go L and R $\sigma_{1}^{\prime}, \sigma_{2}^{\prime}$ prescribe $(L R)^{\omega}$

- $\operatorname{pay}_{1}\left(\left(\sigma_{1}^{\prime}, \sigma_{2}^{\prime}\right)\right)=\operatorname{pay}_{2}\left(\left(\sigma_{1}^{\prime}, \sigma_{2}^{\prime}\right)\right)=\frac{1}{4}$
$\left(\sigma_{1}^{\prime}, \sigma_{2}^{\prime}\right)$ corresponds to the liveness property $\varphi:=\mathrm{GF} / \wedge \mathrm{GF} r$
i.e., $\pi\left(\left(\sigma_{1}^{\prime}, \sigma_{2}^{\prime}\right)\right) \models \varphi$.
- All strategy profiles in the core satisfy φ
- All strategy profiles in the core require memory

How to characterise the core?

- Previous work ${ }^{6}$ in the memoryless setting: guess a correct strategy profile (poly size)
- Strategies have arbitrarily large memories: no bounds on the search space

[^8]
How to characterise the core?

- Previous work ${ }^{6}$ in the memoryless setting: guess a correct strategy profile (poly size)
- Strategies have arbitrarily large memories: no bounds on the search space
- Can we characterise the core using Pareto optimality ${ }^{7}$?

[^9]
How to characterise the core?

- Previous work ${ }^{6}$ in the memoryless setting: guess a correct strategy profile (poly size)
- Strategies have arbitrarily large memories: no bounds on the search space
- Can we characterise the core using Pareto optimality ${ }^{7}$? No

Proposition

There exist games \mathcal{G} such that $\vec{\sigma} \in \operatorname{Core}(\mathcal{G})$ and $\vec{\sigma}$ is not Pareto optimal.

Proposition

There exist games \mathcal{G} such that $\vec{\sigma}$ is Pareto optimal and $\vec{\sigma} \notin \operatorname{Core}(\mathcal{G})$.

[^10]
How to characterise the core?

- In general, the core does not coincide with Pareto optimality
- But PO is still useful!

[^11]
How to characterise the core?

- In general, the core does not coincide with Pareto optimality
- But PO is still useful!
- For a given game \mathcal{G} and $C \subseteq \mathrm{~N}$, we sequentialise into 2-player multi-mean-payoff game $G^{C}=\left(V_{1}, V_{2}, E, w\right)$, where
- C acts as player 1 who owns V_{1}
- $-C$ acts as player 2 who owns V_{2}
- $w: V_{1} \cup V_{2} \rightarrow \mathbb{Z}^{c}$ corresponds to k-dimensional vectors representing the weight functions of C
- $\operatorname{val}\left(G^{C}, s\right)$ is the set of values that can be enforced by C, and $\operatorname{val}\left(G^{C}, s\right)=\downarrow \operatorname{PO}\left(G^{C}, s\right)$
- Brenguier and Raskin ${ }^{8}$ showed that

1. $\operatorname{val}\left(G^{C}, s\right)$ can be represented as finite union of polyhedra
2. For every polyhedron P, there is a vector $\vec{v} \in P$ whose representation is of poly size
[^12]
How to characterise the core?

Can we characterise the set of values corresponding to the core as a polyhedron?

How to characterise the core?

Can we characterise the set of values corresponding to the core as a polyhedron?

How to characterise the core?

Want: characterise the set of values corresponding to the core as a polyhedron

How to characterise the core?

Want: characterise the set of values corresponding to the core as a polyhedron

Lemma

The set $\operatorname{val}\left(G^{C}\right)$ can be represented by a finite union of a set of polyhedra $\operatorname{PS}\left(G^{C}\right)$, and each polyhedron $P_{j}^{C} \in \operatorname{PS}\left(G^{C}\right)$ is polynomially representable.

How to characterise the core?

Want: characterise the set of values corresponding to the core as a polyhedron

Lemma

The set val $\left(G^{C}\right)$ can be represented by a finite union of a set of polyhedra $\operatorname{PS}\left(G^{C}\right)$, and each polyhedron $P_{j}^{C} \in \operatorname{PS}\left(G^{C}\right)$ is polynomially representable.

Lemma

If $\vec{\sigma} \in \operatorname{Core}(\mathcal{G})$ then for each $C \subseteq \mathrm{~N}$ and $P_{j}^{C} \in \operatorname{PS}\left(G^{C}\right)$ there is a half-space H of P_{j}^{C} such that vector $\left(\operatorname{pay}_{i}(\vec{\sigma})\right)_{i \in C}$ is in \bar{H} (i.e., closed complement of H)
$\left(\text { pay }_{i}(\vec{\sigma})\right)_{i \in C}$ is NOT strictly contained in P_{j}^{C}

An intuitive example

Figure 1: Left: Arena for the example. Right: Graphical representation of val($\left.G^{\{2,3\}}\right)$. Coordinates P, Q, R corresponds to the set $\operatorname{PO}\left(G^{N}\right)=\{(2,1,0),(0,2,1),(1,0,2)\}$. There is a beneficial deviation by $\{2,3\}$ (dashed arrow) from P (the $\{1,2\}$-Pareto optimal value) to Q (the $\{2,3\}$-Pareto optimal value).

An intuitive example

Figure 2: Left: Arena for the example. Right: Graphical representation of val($\left.G^{\{2,3\}}\right)$. Coordinates P, Q, R corresponds to the set $\operatorname{PO}\left(G^{\mathbb{N}}\right)=\{(2,1,0),(0,2,1),(1,0,2)\}$. There is a beneficial deviation by $\{2,3\}$ (dashed arrow) from P (the $\{1,2\}$-Pareto optimal value) to Q (the $\{2,3\}$-Pareto optimal value).

An intuitive example modified

Figure 3: Left: Arena for the modified example. Right: Graphical representation of val($\left.G^{\prime\{2,3\}}\right)$. Coordinates P, Q, R, S corresponds to the set $\operatorname{PO}\left(G^{\prime N}\right)=\{(2,1,0),(0,2,1),(1,0,2),(1,1,1)\}$. There is no beneficial deviation from S.

An intuitive example modified

Figure 3: Left: Arena for the modified example. Right: Graphical representation of $\operatorname{val}\left(G^{\prime\{2,3\}}\right)$. Coordinates P, Q, R, S corresponds to the set $\operatorname{PO}\left(G^{\prime N}\right)=\{(2,1,0),(0,2,1),(1,0,2),(1,1,1)\}$. There is no beneficial deviation from S.
$S \in \bar{H}_{3}$. Indeed, for each $C \subseteq N$ there is such a "blocking" half-space. If we take the intersection of such blocking half-spaces and val $\left(G^{\prime N}\right)$ we obtain $\{(1,1,1)\}$

From intuition to characterisation

If the intersection of such blocking half-spaces and $\operatorname{val}\left(G^{\prime N}\right)$ is non-empty, then the core is non-empty.

Theorem

Core $(\mathcal{G}) \neq \varnothing$ iff there exists a set of blocking half-spaces I such that $R=\bigcap_{H \in I} \bar{H} \cap \operatorname{val}\left(G^{N}\right) \neq \varnothing$

[^13]
From intuition to characterisation

If the intersection of such blocking half-spaces and $\operatorname{val}\left(G^{\prime N}\right)$ is non-empty, then the core is non-empty.

Theorem

Core $(\mathcal{G}) \neq \varnothing$ iff there exists a set of blocking half-spaces I such that $R=\bigcap_{H \in I} \bar{H} \cap \operatorname{val}\left(G^{N}\right) \neq \varnothing$
R is a polyhedron representable polynomially wrt \mathcal{G}, as such, there exists a polynomial witness ${ }^{9} \vec{x} \in R$.

Theorem

Given a game \mathcal{G}, if the core is non-empty, then there is $\vec{\sigma} \in \operatorname{Core}(\mathcal{G})$ such that $\left(\text { pay }_{i}(\vec{\sigma})\right)_{i \in \mathbb{N}}$ can be represented polynomially in the size of \mathcal{G}.

[^14]
Strategies in the core and how to find them

- Strategies have arbitrarily large memories: no bounds on the search space
- We do not have to guess the strategies, only need to guess a polynomial witness vector $\vec{x} \in R$

Strategies in the core and how to find them

- Strategies have arbitrarily large memories: no bounds on the search space
- We do not have to guess the strategies, only need to guess a polynomial witness vector $\vec{x} \in R$
- Finding strategies in the core can be reduced to finding $\vec{x} \in R$

Rational Verification: Decision Problems

- Universality: all strategy profiles in the core satisfy a LTL property φ (A-Core)
- Existence: there exists a strategy profile in the core satisfying a LTL property φ (E-Core)
- Stability: Is the core non-empty? (Non-Emptiness)

Coordination game revisited

- Non-Emptiness returns YES

Coordination game revisited

- Non-Emptiness returns YES
- A-Core with $\varphi:=\mathrm{GF} / \wedge$ GFr returns YES

Coordination game revisited

- Non-Emptiness returns YES
- A-Core with $\varphi:=\mathrm{GF} / \wedge \mathrm{GF} r$ returns YES
- E-CORE with $\varphi:=\mathrm{G} m$ returns NO

Solving Non-Emptiness

Given: game \mathcal{G}
Non-Emptiness: Is it the case that $\operatorname{Core}(\mathcal{G}) \neq \varnothing$?
Procedure:

1. Guess a vector $\vec{x} \in R$
2. Check if \vec{x} admits beneficial deviations, then return NO; otherwise return YES

- Step 1 is in NP
- Step 2 involves calling Σ_{2}^{P} oracle
- Non-Emptiness can be solved in Σ_{3}^{P}

Solving E-Core and A-Core

Given: Game \mathcal{G}, formula φ.
E-Core: Is it the case that there exists some $\vec{\sigma} \in \operatorname{Core}(\mathcal{G})$ such that $\vec{\sigma} \models \varphi$?
A-Core: Is it the case that for all $\vec{\sigma} \in \operatorname{Core}(\mathcal{G})$, we have $\vec{\sigma} \models \varphi$?
Observations:

- A witness to E-Core would be a path π such that

1. $\left.\operatorname{pay}_{i}(\pi)\right)_{i \in \mathrm{~N}} \geq\left(\operatorname{pay}_{i}(\vec{\sigma})\right)$ for some $\vec{\sigma} \in \operatorname{Core}(\mathcal{G})$
2. $\pi \models \varphi$

- φ has an ultimately periodic model of size $2^{O(|\varphi|)},{ }^{10}$ thus the size of representation of pay $_{i}(\pi)$ is polynomial wrt \mathcal{G}

[^15]
Solving E-Core and A-Core

Procedure:

1. Guess a vector $\vec{x} \in R$ and set of states $S \subseteq$ St
2. If all $s \in S$ is "safe", then
2.1 Produce a subgame $\mathcal{G}[S]$ by removing all states $s \notin S$
2.2 If there is π in $\mathcal{G}[S]$ with $\operatorname{pay}_{i}(\pi) \geq x_{i}, \forall i \in \mathrm{~N}$ and $\pi \vDash \varphi$, return YES
3. Return NO

Solving E-Core and A-Core

Procedure:

1. Guess a vector $\vec{x} \in R$ and set of states $S \subseteq$ St
2. If all $s \in S$ is "safe", then
2.1 Produce a subgame $\mathcal{G}[S]$ by removing all states $s \notin S$
2.2 If there is π in $\mathcal{G}[S]$ with $\operatorname{pay}_{i}(\pi) \geq x_{i}, \forall i \in \mathrm{~N}$ and $\pi \models \varphi$, return YES
3. Return NO

- Step 1 is in NP
- Step 2 is in Σ_{2}^{P}
- Step 2.1 is in PTIME
- Step 2.2:
- If φ is in the full LTL: PSPACE
- If φ is in an "easy" fragment of LTL (e.g., GR(1)): PTIME
- Solving E-Core is in PSPACE (full LTL) or Σ_{3}^{P} (easy LTL fragment)
- Solving A-Core is in PSPACE (full LTL) or Π_{3}^{P} (easy LTL fragment)

Complexity landscape

Problem	Finite Memory	Memoryless 11	NE 12,13
NON-EMPTINESS	$\Sigma_{3}^{P}-c$	Σ_{2}^{P}	NP-c
E-CoRE with LTL spec.	PSPACE-c		PSPACE-c
A-CORE with LTL spec.	PSPACE-c		PSPACE-c
E-CORE with GR(1) spec.	$\sum_{3}^{P}-c$	Σ_{2}^{P}	NP-c
A-CORE with GR(1) spec.	$\Pi_{3}^{P}-c$	Π_{2}^{P}	coNP-c

Figure 4: Summary of complexity results. The NE column shows complexity results for the corresponding decision problems with NE.

[^16]
Concluding remarks

- Characterisation of the core using discrete geometry
- Showed that in our setting, the core admits polynomial witnesses
- Tight complexity bounds for rational verification problems

Future work:

- Can we establish sufficient and necessary conditions of non-emptiness of the core in a broader sense, e.g., quasi-concavity of utility functions ${ }^{14}$
- What can we do when the core is empty? Modify the games, e.g., utility functions, norms to limit actions,...
- Can we use our characterisation here to extend ATL* with mean-payoff semantics?

[^17]
[^0]: ${ }^{1}$ we use these terms interchangeably

[^1]: ${ }^{1}$ we use these terms interchangeably

[^2]: ${ }^{1}$ we use these terms interchangeably

[^3]: ${ }^{2}$ Allan Dafoe et al. "Cooperative AI: machines must learn to find common ground". In: Nature (2021).
 ${ }^{3}$ Vincent Conitzer and Caspar Oesterheld. "Foundations of Cooperative AI". In: AAAI. 2023.
 ${ }^{4}$ Elisa Bertino et al. Artificial Intelligence and Cooperation. Tech. rep. Computing Community Consortium, 2020.

[^4]: ${ }^{a}$ There is previous work in the memoryless setting.

[^5]: ${ }^{5}$ Robert J Aumann. "The core of a cooperative game without side payments". In: Trans. of the American Math. Soc. (1961).

[^6]: ${ }^{5}$ Aumann, "The core of a cooperative game without side payments".

[^7]: ${ }^{5}$ Aumann, "The core of a cooperative game without side payments".

[^8]: ${ }^{6}$ Thomas Steeples, Julian Gutierrez, and Michael Wooldridge. "Mean-payoff games with ω-regular specifications". In: AAMAS. 2021.
 ${ }^{7}$ Romain Brenguier and Jean-François Raskin. "Pareto Curves of Multidimensional Mean-Payoff Games". In: CAV. 2015.

[^9]: ${ }^{6}$ Steeples, Gutierrez, and Wooldridge, "Mean-payoff games with ω-regular specifications".
 ${ }^{7}$ Brenguier and Raskin, "Pareto Curves of Multidimensional Mean-Payoff Games".

[^10]: ${ }^{6}$ Steeples, Gutierrez, and Wooldridge, "Mean-payoff games with ω-regular specifications".
 ${ }^{7}$ Brenguier and Raskin, "Pareto Curves of Multidimensional Mean-Payoff Games".

[^11]: ${ }^{8}$ Brenguier and Raskin, "Pareto Curves of Multidimensional Mean-Payoff Games".

[^12]: ${ }^{8}$ Brenguier and Raskin, "Pareto Curves of Multidimensional Mean-Payoff Games".

[^13]: ${ }^{9}$ Brenguier and Raskin, "Pareto Curves of Multidimensional Mean-Payoff Games".

[^14]: ${ }^{9}$ Brenguier and Raskin, "Pareto Curves of Multidimensional Mean-Payoff Games".

[^15]: ${ }^{10}$ A. P. Sistla and E. M. Clarke. "The complexity of propositional linear temporal logics". In: J. ACM (1985).

[^16]: ${ }^{11}$ Steeples, Gutierrez, and Wooldridge, "Mean-payoff games with ω-regular specifications".
 ${ }^{12}$ M. Ummels and D. Wojtczak. "The Complexity of Nash Equilibria in Limit-Average Games". In: CONCUR. 2011.
 ${ }^{13}$ Julian Gutierrez et al. "On Computational Tractability for Rational Verification". In: IJCAI. 2019.

[^17]: ${ }^{14}$ Herbert E Scarf. "On the existence of a cooperative solution for a general class of N-person games". In: J. of Economic Theory (1971).

