Verification of Cooperative and Concurrent Multi-Player Mean-Payoff Games

Muhammad Najib Heriot-Watt University

To appear in CSL'24 Joint work with: Julian Gutierrez (Monash), Anthony W. Lin (Kaiserslautern-Landau), Thomas Steeples and Mike Wooldridge (Oxford)

Games and AI

- Long and illustrious history: starting from Turing's 'imitation game'
- Concurrent multi-player games for modelling multi-agent AI systems (ATL, PRISM,...)
 - played in infinite sequence of rounds
 - multiple players/agents¹ chooses actions simultaneously
 - each player has a preference/goal

¹we use these terms interchangeably

Games and AI

- Long and illustrious history: starting from Turing's 'imitation game'
- Concurrent multi-player games for modelling multi-agent AI systems (ATL, PRISM,...)
 - played in infinite sequence of rounds
 - multiple players/agents¹ chooses actions simultaneously
 - each player has a preference/goal
- Concurrent multi-player mean-payoff games:
 - Played over a **weighted** graph
 - A play generates an infinite sequence of numbers (weights): $r^0r^1r^2\cdots\in\mathbb{R}^{\omega}$
 - Players want to maximise a mean-payoff: $mp(r) = \liminf_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} r^i$

¹we use these terms interchangeably

Games and AI

- Long and illustrious history: starting from Turing's 'imitation game'
- Concurrent multi-player games for modelling multi-agent AI systems (ATL, PRISM,...)
 - played in infinite sequence of rounds
 - multiple players/agents¹ chooses actions simultaneously
 - each player has a preference/goal
- Concurrent multi-player mean-payoff games:
 - Played over a weighted graph
 - A play generates an infinite sequence of numbers (weights): $r^0r^1r^2\cdots\in\mathbb{R}^{\omega}$
 - Players want to maximise a mean-payoff: $mp(r) = \liminf_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} r^i$
- Much research has been done on (2-player) zero-sum, (multi-player) general sum in non-cooperative settings (NE, SPNE)

¹we use these terms interchangeably

- Recently emerged as a prominent topic^{2,3,4}
- Agents can communicate (negotiate, reach agreements,...) and benefit from cooperation
- Use mean-payoff games to model resource-sensitive cooperative AI systems
- What **outcomes** can/cannot arise given the possibility of cooperation? (rational verification)
- To predict the outcomes, use **solution concept** from cooperative game theory

²Allan Dafoe et al. "Cooperative AI: machines must learn to find common ground". In: *Nature* (2021).

³Vincent Conitzer and Caspar Oesterheld. "Foundations of Cooperative AI". In: AAAI. 2023.

⁴Elisa Bertino et al. Artificial Intelligence and Cooperation. Tech. rep. Computing Community Consortium, 2020.

Concurrent multi-player mean-payoff games

Concurrent multi-player mean-payoff game $\mathcal{G} = (A, (w_i)_{i \in \mathbb{N}})$

- Arena $A = \langle N, \{Ac_i\}_{i \in N}, St, s_{init}, tr, lab \rangle$
- weight function w_i : St → Z is a mapping, for every player *i*, every state of the arena into an integer number.

Player *i*'s Payoff

For an infinite sequence of weights, $w_i = w_i^0 w_i^1 w_i^2 \cdots \in \mathbb{Z}^{\omega}$, define the payoff $pay_i(w_i) = mp(w_i) = \liminf_{n \to \infty} \frac{1}{n} \sum_{t=0}^{n-1} w_i^t$.

Strategies

- A strategy for *i* can be understood abstractly as a function σ_i : St⁺ → Ac_i which maps sequences (or histories) of states into a chosen action for player *i*.
- memoryless strategy $\sigma_i : St \to Ac_i$ chooses an action based only on the current state of the environment
- finite-memory strategy represented by a finite state machine $\sigma_i = (Q_i, q_i^0, \delta_i, \tau_i)$,
 - Q_i is a finite and non-empty set of *internal states*
 - q_i^0 is the *initial state*
 - $\delta_i : Q_i \times St \rightarrow Q_i$ is a deterministic internal transition function
 - $au_i: Q_i
 ightarrow \operatorname{Ac}_i$ an action function

Strategies

- A strategy for *i* can be understood abstractly as a function σ_i : St⁺ → Ac_i which maps sequences (or histories) of states into a chosen action for player *i*.
- memoryless strategy $\sigma_i : St \to Ac_i$ chooses an action based only on the current state of the environment
- finite-memory strategy represented by a finite state machine $\sigma_i = (Q_i, q_i^0, \delta_i, \tau_i)$,
 - Q_i is a finite and non-empty set of *internal states*
 - q_i^0 is the *initial state*
 - $\delta_i : Q_i \times St \to Q_i$ is a deterministic internal transition function
 - $au_i: Q_i \to \operatorname{Ac}_i$ an action function

In this work, we assume that players have finite but unbounded memory^a strategies.

- 1. Practically realisable
- 2. sufficient to implement LTL specifications

^aThere is previous work in the **memoryless** setting.

- When each player has chosen a strategy we have a strategy profile $\vec{\sigma} = (\sigma_1, \dots, \sigma_n)$
- Given a game $\mathcal{G} = \langle A, (w_i)_{i \in \mathbb{N}} \rangle$ and a strategy profile $\vec{\sigma}$, an outcome $\pi(\vec{\sigma})$ in A induces
 - a sequence $lab(\pi(\vec{\sigma})) = lab(s^0) lab(s^1) \cdots$ of sets of atomic propositions
 - and for each player *i*, the sequence $w_i(\pi(\vec{\sigma})) = w_i(s^0)w_i(s^1)\cdots$ of weights
- The **payoff** of player *i* is $pay_i(\vec{\sigma}) = mp(w_i(\pi(\vec{\sigma})))$

Solution Concepts

- Non-cooperative: NE
 - a strategy profile from which no individual player has any incentive to unilaterally deviate
- Cooperative: the core (introduced by Aumann (2005 Nobel in Economics)⁵)
 - the set of strategy profiles from which no coalition has any incentive to deviate

⁵Robert J Aumann. "The core of a cooperative game without side payments". In: *Trans. of the American Math. Soc.* (1961).

Solution Concepts

- Non-cooperative: NE
 - a strategy profile from which no individual player has any incentive to unilaterally deviate
- Cooperative: the core (introduced by Aumann (2005 Nobel in Economics)⁵)
 - the set of strategy profiles from which no coalition has any incentive to deviate

strategy in the core

 $\vec{\sigma} \in \operatorname{Core}(\mathcal{G})$ if for every coalition $C \subseteq \mathbb{N}$ and (partial) strategy profile $\vec{\sigma}'_{C}$, there is some (partial) counter-strategy profile $\vec{\sigma}'_{-C}$ such that $\operatorname{pay}_{i}(\vec{\sigma}) \geq \operatorname{pay}_{i}(\vec{\sigma}'_{C}, \vec{\sigma}'_{-C})$

 $^{^5\}mathrm{Aumann},~^{\mathrm{``The~core~of~a}}$ cooperative game without side payments".

Solution Concepts

- Non-cooperative: NE
 - a strategy profile from which no individual player has any incentive to unilaterally deviate
- Cooperative: the core (introduced by Aumann (2005 Nobel in Economics)⁵)
 - the set of strategy profiles from which no coalition has any incentive to deviate

strategy in the core

 $\vec{\sigma} \in \operatorname{Core}(\mathcal{G})$ if for every coalition $C \subseteq \mathbb{N}$ and (partial) strategy profile $\vec{\sigma}'_{C}$, there is some (partial) counter-strategy profile $\vec{\sigma}'_{-C}$ such that $\operatorname{pay}_{i}(\vec{\sigma}) \geq \operatorname{pay}_{i}(\vec{\sigma}'_{C}, \vec{\sigma}'_{-C})$

Main differences:

- Players can act in coalitions (as opposed to individuals)
- Counter-strategy can be different from the original strategy

 $^{^{5}\}mbox{Aumann},$ "The core of a cooperative game without side payments".

- $N = \{1, 2\}$
- Players are initially in *m*
- player 1 gets 1 when **both** chooses *L*
- player 2 gets 1 when **both** chooses *R*

- σ_1 prescribes L^{ω} , σ_2 prescribes R^{ω}
- (σ_1, σ_2) is a NE, albeit a "bad" one as $pay_1((\sigma_1, \sigma_2)) = pay_2((\sigma_1, \sigma_2)) = 0$

- σ_1 prescribes L^{ω} , σ_2 prescribes R^{ω}
- (σ_1, σ_2) is a NE, albeit a "bad" one as pay₁((σ_1, σ_2)) = pay₂((σ_1, σ_2)) = 0
- But (σ_1, σ_2) is **not** in the core: $\{1, 2\}$ can agree to alternately go *L* and *R* σ'_1, σ'_2 prescribe $(LR)^{\omega}$
- $pay_1((\sigma'_1, \sigma'_2)) = pay_2((\sigma'_1, \sigma'_2)) = \frac{1}{4}$

- σ_1 prescribes L^{ω} , σ_2 prescribes R^{ω}
- (σ_1, σ_2) is a NE, albeit a "bad" one as pay₁ $((\sigma_1, \sigma_2)) = pay_2((\sigma_1, \sigma_2)) = 0$
- But (σ_1, σ_2) is **not** in the core: $\{1, 2\}$ can agree to alternately go *L* and *R* σ'_1, σ'_2 prescribe $(LR)^{\omega}$
- $pay_1((\sigma'_1, \sigma'_2)) = pay_2((\sigma'_1, \sigma'_2)) = \frac{1}{4}$

 (σ'_1, σ'_2) corresponds to the liveness property $\varphi := \mathbf{GF} / \wedge \mathbf{GF} r$ i.e., $\pi((\sigma'_1, \sigma'_2)) \models \varphi$.

- σ_1 prescribes L^{ω} , σ_2 prescribes R^{ω}
- (σ_1, σ_2) is a NE, albeit a "bad" one as pay₁ $((\sigma_1, \sigma_2)) = pay_2((\sigma_1, \sigma_2)) = 0$
- But (σ₁, σ₂) is not in the core: {1,2} can agree to alternately go L and R σ'₁, σ'₂ prescribe (LR)^ω
- $pay_1((\sigma'_1, \sigma'_2)) = pay_2((\sigma'_1, \sigma'_2)) = \frac{1}{4}$

 (σ'_1, σ'_2) corresponds to the liveness property $\varphi := \mathbf{GF} l \wedge \mathbf{GF} r$ i.e., $\pi((\sigma'_1, \sigma'_2)) \models \varphi$.

- All strategy profiles in the core satisfy φ
- All strategy profiles in the core require memory

- Previous work⁶ in the memoryless setting: guess a correct strategy profile (poly size)
- Strategies have arbitrarily large memories: no bounds on the search space

 $^{^{6}}$ Thomas Steeples, Julian Gutierrez, and Michael Wooldridge. "Mean-payoff games with ω -regular specifications". In: *AAMAS*. 2021.

⁷Romain Brenguier and Jean-François Raskin. "Pareto Curves of Multidimensional Mean-Payoff Games". In: CAV. 2015.

- Previous work⁶ in the memoryless setting: guess a correct strategy profile (poly size)
- Strategies have arbitrarily large memories: no bounds on the search space
- Can we characterise the core using Pareto optimality⁷?

 $^{^{6}}$ Steeples, Gutierrez, and Wooldridge, "Mean-payoff games with ω -regular specifications". 7 Brenguier and Raskin, "Pareto Curves of Multidimensional Mean-Payoff Games".

- Previous work⁶ in the memoryless setting: guess a correct strategy profile (poly size)
- Strategies have arbitrarily large memories: no bounds on the search space
- Can we characterise the core using Pareto optimality⁷? No

Proposition

There exist games \mathcal{G} such that $\vec{\sigma} \in \operatorname{Core}(\mathcal{G})$ and $\vec{\sigma}$ is not Pareto optimal.

Proposition

There exist games \mathcal{G} such that $\vec{\sigma}$ is Pareto optimal and $\vec{\sigma} \notin \operatorname{Core}(\mathcal{G})$.

 $^{^6}$ Steeples, Gutierrez, and Wooldridge, "Mean-payoff games with ω -regular specifications".

⁷Brenguier and Raskin, "Pareto Curves of Multidimensional Mean-Payoff Games".

- In general, the core does not coincide with Pareto optimality
- But PO is still useful!

⁸Brenguier and Raskin, "Pareto Curves of Multidimensional Mean-Payoff Games".

- In general, the core does not coincide with Pareto optimality
- But PO is still useful!
- For a given game \mathcal{G} and $C \subseteq \mathbb{N}$, we **sequentialise** into 2-player multi-mean-payoff game $G^{C} = (V_1, V_2, E, w)$, where
 - C acts as player 1 who owns V_1
 - -C acts as player 2 who owns V_2
 - $w: V_1 \cup V_2 \to \mathbb{Z}^c$ corresponds to *k*-dimensional vectors representing the weight functions of *C*
- val(G^{C} , s) is the set of values that can be **enforced** by C, and val(G^{C} , s) = $\downarrow PO(G^{C}$, s)
- Brenguier and Raskin⁸ showed that
 - 1. $val(G^{C}, s)$ can be represented as finite union of polyhedra
 - 2. For every polyhedron P, there is a vector $\vec{v} \in P$ whose representation is of poly size

⁸Brenguier and Raskin, "Pareto Curves of Multidimensional Mean-Payoff Games".

Can we characterise the set of values corresponding to the core as a polyhedron?

Can we characterise the set of values corresponding to the core as a polyhedron?

Want: characterise the set of values corresponding to the core as a polyhedron

Want: characterise the set of values corresponding to the core as a polyhedron

Lemma

The set val(G^{C}) can be represented by a finite union of a set of polyhedra $PS(G^{C})$, and each polyhedron $P_{i}^{C} \in PS(G^{C})$ is polynomially representable.

Want: characterise the set of values corresponding to the core as a polyhedron

Lemma

The set val(G^{C}) can be represented by a finite union of a set of polyhedra $PS(G^{C})$, and each polyhedron $P_{i}^{C} \in PS(G^{C})$ is polynomially representable.

Lemma

If $\vec{\sigma} \in \text{Core}(\mathcal{G})$ then for each $C \subseteq \mathbb{N}$ and $P_j^C \in \text{PS}(G^C)$ there is a half-space H of P_j^C such that vector $(\text{pay}_i(\vec{\sigma}))_{i \in C}$ is in \overline{H} (i.e., closed complement of H)

 $(pay_i(\vec{\sigma}))_{i \in C}$ is NOT strictly contained in P_i^C

An intuitive example

Figure 1: Left: Arena for the example. Right: Graphical representation of $val(G^{\{2,3\}})$. Coordinates P, Q, R corresponds to the set $PO(G^N) = \{(2,1,0), (0,2,1), (1,0,2)\}$. There is a beneficial deviation by $\{2,3\}$ (dashed arrow) from P (the $\{1,2\}$ -Pareto optimal value) to Q (the $\{2,3\}$ -Pareto optimal value).

An intuitive example

Figure 2: Left: Arena for the example. Right: Graphical representation of $val(G^{\{2,3\}})$. Coordinates P, Q, R corresponds to the set $PO(G^N) = \{(2,1,0), (0,2,1), (1,0,2)\}$. There is a beneficial deviation by $\{2,3\}$ (dashed arrow) from P (the $\{1,2\}$ -Pareto optimal value) to Q (the $\{2,3\}$ -Pareto optimal value).

An intuitive example modified

Figure 3: Left: Arena for the modified example. Right: Graphical representation of val($G'^{\{2,3\}}$). Coordinates P, Q, R, S corresponds to the set $PO(G'^N) = \{(2,1,0), (0,2,1), (1,0,2), (1,1,1)\}$. There is no beneficial deviation from S.

An intuitive example modified

Figure 3: Left: Arena for the modified example. Right: Graphical representation of val($G'^{\{2,3\}}$). Coordinates P, Q, R, S corresponds to the set $PO(G'^N) = \{(2,1,0), (0,2,1), (1,0,2), (1,1,1)\}$. There is no beneficial deviation from S.

 $S \in \overline{H}_3$. Indeed, for each $C \subseteq \mathbb{N}$ there is such a "**blocking**" half-space. If we take the intersection of such **blocking** half-spaces and val $(G'^{\mathbb{N}})$ we obtain $\{(1, 1, 1)\}$

From intuition to characterisation

If the intersection of such **blocking** half-spaces and $val(G'^N)$ is non-empty, then the core is non-empty.

Theorem

Core(\mathcal{G}) $\neq \emptyset$ iff there exists a set of **blocking** half-spaces I such that $R = \bigcap_{H \in I} \overline{H} \cap \operatorname{val}(G^{\mathbb{N}}) \neq \emptyset$

⁹Brenguier and Raskin, "Pareto Curves of Multidimensional Mean-Payoff Games".

From intuition to characterisation

If the intersection of such **blocking** half-spaces and $val(G'^N)$ is non-empty, then the core is non-empty.

Theorem Core(\mathcal{G}) $\neq \emptyset$ iff there exists a set of **blocking** half-spaces I such that $R = \bigcap_{H \in I} \overline{H} \cap \operatorname{val}(G^{\mathbb{N}}) \neq \emptyset$

R is a polyhedron representable polynomially wrt \mathcal{G} , as such, there exists a **polynomial** witness⁹ $\vec{x} \in R$.

Theorem

Given a game \mathcal{G} , if the core is non-empty, then there is $\vec{\sigma} \in \operatorname{Core}(\mathcal{G})$ such that $(\operatorname{pay}_i(\vec{\sigma}))_{i \in \mathbb{N}}$ can be represented polynomially in the size of \mathcal{G} .

⁹Brenguier and Raskin, "Pareto Curves of Multidimensional Mean-Payoff Games".

Strategies in the core and how to find them

- Strategies have arbitrarily large memories: no bounds on the search space
- We do not have to guess the strategies, only need to guess a polynomial witness vector $\vec{x} \in R$

Strategies in the core and how to find them

- Strategies have arbitrarily large memories: no bounds on the search space
- We do not have to guess the strategies, only need to guess a polynomial witness vector $\vec{x} \in R$
- Finding strategies in the core can be reduced to finding $\vec{x} \in R$

Rational Verification: Decision Problems

- Universality: all strategy profiles in the core satisfy a LTL property φ (A-CORE)
- Existence: there exists a strategy profile in the core satisfying a LTL property φ (E-CORE)
- Stability: Is the core non-empty? (NON-EMPTINESS)

Coordination game revisited

• NON-EMPTINESS returns YES

Coordination game revisited

- NON-EMPTINESS returns YES
- A-CORE with $\varphi := \mathbf{GF} / \wedge \mathbf{GF} r$ returns YES

Coordination game revisited

- NON-EMPTINESS returns YES
- A-CORE with $\varphi := \mathbf{GF} / \wedge \mathbf{GF} r$ returns YES
- E-CORE with $\varphi := \mathbf{G}m$ returns NO

Given: game \mathcal{G} NON-EMPTINESS: Is it the case that $\operatorname{Core}(\mathcal{G}) \neq \emptyset$?

Procedure:

- 1. Guess a vector $\vec{x} \in R$
- 2. Check if \vec{x} admits beneficial deviations, then return **NO**; otherwise return **YES**
- Step 1 is in NP
- Step 2 involves calling Σ_2^P oracle
- Non-Emptiness can be solved in Σ_3^{P}

Solving E-Core and A-Core

Given: Game \mathcal{G} , formula φ .

E-CORE: Is it the case that there exists some $\vec{\sigma} \in \text{Core}(\mathcal{G})$ such that $\vec{\sigma} \models \varphi$?

A-CORE: Is it the case that for all $\vec{\sigma} \in \text{Core}(\mathcal{G})$, we have $\vec{\sigma} \models \varphi$?

Observations:

- A witness to $\operatorname{E-CORE}$ would be a path π such that
 - 1. $pay_i(\pi))_{i\in\mathbb{N}} \ge (pay_i(\vec{\sigma}))$ for some $\vec{\sigma} \in Core(\mathcal{G})$ 2. $\pi \models \varphi$
- φ has an ultimately periodic model of size 2^{O(|φ|)},¹⁰ thus the size of representation of pay_i(π) is polynomial wrt G

¹⁰A. P. Sistla and E. M. Clarke. "The complexity of propositional linear temporal logics". In: J. ACM (1985).

Solving E-Core and A-Core

Procedure:

- 1. Guess a vector $\vec{x} \in R$ and set of states $S \subseteq St$
- 2. If all $s \in S$ is "safe", then
 - 2.1 Produce a subgame $\mathcal{G}[S]$ by removing all states $s \notin S$
 - 2.2 If there is π in $\mathcal{G}[S]$ with $pay_i(\pi) \ge x_i, \forall i \in \mathbb{N}$ and $\pi \models \varphi$, return **YES**

3. Return NO

Solving E-Core and A-Core

Procedure:

- 1. Guess a vector $\vec{x} \in R$ and set of states $S \subseteq St$
- 2. If all $s \in S$ is "safe", then
 - 2.1 Produce a subgame $\mathcal{G}[S]$ by removing all states $s \notin S$
 - 2.2 If there is π in $\mathcal{G}[S]$ with $pay_i(\pi) \ge x_i, \forall i \in \mathbb{N}$ and $\pi \models \varphi$, return **YES**
- 3. Return NO
 - Step 1 is in NP
 - Step 2 is in Σ_2^P
 - Step 2.1 is in PTIME
 - Step 2.2:
 - If φ is in the full LTL: PSPACE
 - If φ is in an "easy" fragment of LTL (e.g., GR(1)): PTIME
 - Solving E-CORE is in PSPACE (full LTL) or Σ_3^P (easy LTL fragment)
 - Solving A-CORE is in PSPACE (full LTL) or Π_3^P (easy LTL fragment)

Problem	Finite Memory	${\sf Memoryless}^{11}$	NE ^{12,13}
Non-Emptiness	Σ <mark>Р</mark> -с	Σ_2^{P}	NP-c
$\operatorname{E-CORE}$ with LTL spec.	PSPACE-c		PSPACE-c
$\operatorname{A-CORE}$ with LTL spec.	PSPACE-c		PSPACE-c
$\operatorname{E-CORE}$ with $GR(1)$ spec.	Σ ^P ₃ -c	Σ_2^{P}	NP-c
A- CORE with GR(1) spec.	П <mark>Р</mark> -с	Π_2^{P}	coNP-c

Figure 4: Summary of complexity results. The NE column shows complexity results for the corresponding decision problems with NE.

 $^{^{11}}$ Steeples, Gutierrez, and Wooldridge, "Mean-payoff games with $\omega\text{-}\text{regular specifications"}$.

¹²M. Ummels and D. Wojtczak. "The Complexity of Nash Equilibria in Limit-Average Games". In: CONCUR. 2011.

¹³Julian Gutierrez et al. "On Computational Tractability for Rational Verification". In: IJCAI. 2019.

Concluding remarks

- Characterisation of the core using discrete geometry
- Showed that in our setting, the core admits polynomial witnesses
- Tight complexity bounds for rational verification problems

Future work:

- Can we establish sufficient and necessary conditions of non-emptiness of the core in a broader sense, e.g., quasi-concavity of utility functions¹⁴
- What can we do when the core is empty? Modify the games, e.g., utility functions, norms to limit actions,...
- Can we use our characterisation here to extend ATL* with mean-payoff semantics?

¹⁴Herbert E Scarf. "On the existence of a cooperative solution for a general class of N-person games". In: *J. of Economic Theory* (1971).