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Games and AI

• Long and illustrious history: starting from Turing’s ’imitation game’

• Concurrent multi-player games for modelling multi-agent AI systems (ATL, PRISM,...)

• played in infinite sequence of rounds

• multiple players/agents1 chooses actions simultaneously

• each player has a preference/goal

• Concurrent multi-player mean-payoff games:

• Played over a weighted graph

• A play generates an infinite sequence of numbers (weights): r 0r 1r 2 · · · ∈ Rω

• Players want to maximise a mean-payoff: mp(r) = lim infn→∞
1
n

∑n−1
i=0 r i

• Much research has been done on (2-player) zero-sum, (multi-player) general sum in

non-cooperative settings (NE, SPNE)

1we use these terms interchangeably
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Cooperative AI

• Recently emerged as a prominent topic2,3,4

• Agents can communicate (negotiate, reach agreements,...) and benefit from cooperation

• Use mean-payoff games to model resource-sensitive cooperative AI systems

• What outcomes can/cannot arise given the possibility of cooperation? (rational

verification)

• To predict the outcomes, use solution concept from cooperative game theory

2Allan Dafoe et al. “Cooperative AI: machines must learn to find common ground”. In: Nature (2021).
3Vincent Conitzer and Caspar Oesterheld. “Foundations of Cooperative AI”. In: AAAI. 2023.
4Elisa Bertino et al. Artificial Intelligence and Cooperation. Tech. rep. Computing Community Consortium, 2020.
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Concurrent multi-player mean-payoff games

Concurrent multi-player mean-payoff game G = (A, (wi )i∈N)

• Arena A =⟨N, {Aci}i∈N,St, sinit , tr, lab⟩
• weight function wi : St → Z is a mapping, for every player i , every state of the arena

into an integer number.

Player i ’s Payoff

For an infinite sequence of weights, wi = w0
i w

1
i w

2
i · · · ∈ Zω, define the payoff

payi (wi ) = mp(wi ) = lim infn→∞
1
n

∑n−1
t=0 w t

i .
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Strategies

• A strategy for i can be understood abstractly as a function σi : St
+ → Aci which maps

sequences (or histories) of states into a chosen action for player i .

• memoryless strategy σi : St → Aci chooses an action based only on the current state of

the environment

• finite-memory strategy represented by a finite state machine σi = (Qi , q
0
i , δi , τi ),

• Qi is a finite and non-empty set of internal states

• q0
i is the initial state

• δi : Qi × St → Qi is a deterministic internal transition function

• τi : Qi → Aci an action function

In this work, we assume that players have finite but unbounded memorya strategies.

1. Practically realisable

2. sufficient to implement LTL specifications

aThere is previous work in the memoryless setting.
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Strategies in games

• When each player has chosen a strategy we have a strategy profile σ⃗ = (σ1, . . . , σn)

• Given a game G =⟨A, (wi )i∈N⟩ and a strategy profile σ⃗, an outcome π(σ⃗) in A induces

• a sequence lab(π(σ⃗)) = lab(s0)lab(s1) · · · of sets of atomic propositions

• and for each player i , the sequence wi (π(σ⃗)) = wi (s
0)wi (s

1) · · · of weights

• The payoff of player i is payi (σ⃗) = mp(wi (π(σ⃗)))

6



Solution Concepts

• Non-cooperative: NE

• a strategy profile from which no individual player has any incentive to unilaterally deviate

• Cooperative: the core (introduced by Aumann (2005 Nobel in Economics)5)

• the set of strategy profiles from which no coalition has any incentive to deviate

strategy in the core

σ⃗ ∈ Core(G) if for every coalition C ⊆ N and (partial) strategy profile σ⃗′
C , there is some (partial)

counter-strategy profile σ⃗′
−C such that payi (σ⃗) ≥ payi (σ⃗

′
C , σ⃗

′
−C )

Main differences:

• Players can act in coalitions (as opposed to individuals)

• Counter-strategy can be different from the original strategy

5Robert J Aumann. “The core of a cooperative game without side payments”. In: Trans. of the American Math. Soc. (1961).

7



Solution Concepts

• Non-cooperative: NE

• a strategy profile from which no individual player has any incentive to unilaterally deviate

• Cooperative: the core (introduced by Aumann (2005 Nobel in Economics)5)

• the set of strategy profiles from which no coalition has any incentive to deviate

strategy in the core

σ⃗ ∈ Core(G) if for every coalition C ⊆ N and (partial) strategy profile σ⃗′
C , there is some (partial)

counter-strategy profile σ⃗′
−C such that payi (σ⃗) ≥ payi (σ⃗

′
C , σ⃗

′
−C )

Main differences:

• Players can act in coalitions (as opposed to individuals)

• Counter-strategy can be different from the original strategy

5Aumann, “The core of a cooperative game without side payments”.

7



Solution Concepts

• Non-cooperative: NE

• a strategy profile from which no individual player has any incentive to unilaterally deviate

• Cooperative: the core (introduced by Aumann (2005 Nobel in Economics)5)

• the set of strategy profiles from which no coalition has any incentive to deviate

strategy in the core

σ⃗ ∈ Core(G) if for every coalition C ⊆ N and (partial) strategy profile σ⃗′
C , there is some (partial)

counter-strategy profile σ⃗′
−C such that payi (σ⃗) ≥ payi (σ⃗

′
C , σ⃗

′
−C )

Main differences:

• Players can act in coalitions (as opposed to individuals)

• Counter-strategy can be different from the original strategy

5Aumann, “The core of a cooperative game without side payments”.

7



An example: coordination game

• N = {1, 2}
• Players are initially in m

• player 1 gets 1 when both chooses L

• player 2 gets 1 when both chooses R

m

(0, 0)

r

(0, 1)

l

(1, 0)

(L, L)

(∗,R) (R,R)

(L, ∗)

(L,R)

(R, L)

(L, L) (R,R)
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An example: coordination game

• σ1 prescribes Lω, σ2 prescribes Rω

• (σ1, σ2) is a NE, albeit a “bad” one as

pay1((σ1, σ2)) = pay2((σ1, σ2)) = 0

• But (σ1, σ2) is not in the core: {1, 2} can

agree to alternately go L and R

σ′
1, σ

′
2 prescribe (LR)ω

• pay1((σ
′
1, σ

′
2)) = pay2((σ

′
1, σ

′
2)) =

1
4

m

(0, 0)

r

(0, 1)

l

(1, 0)

(L, L)

(∗,R) (R,R)

(L, ∗)

(L,R)

(R, L)

(L, L) (R,R)

(σ′
1, σ

′
2) corresponds to the liveness property φ := GFl ∧ GFr

i.e., π((σ′
1, σ

′
2)) |= φ.

• All strategy profiles in the core satisfy φ

• All strategy profiles in the core require memory
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How to characterise the core?

• Previous work6 in the memoryless setting: guess a correct strategy profile (poly size)

• Strategies have arbitrarily large memories: no bounds on the search space

• Can we characterise the core using Pareto optimality7? No

Proposition

There exist games G such that σ⃗ ∈ Core(G) and σ⃗ is not Pareto optimal.

Proposition

There exist games G such that σ⃗ is Pareto optimal and σ⃗ ̸∈ Core(G).

6Thomas Steeples, Julian Gutierrez, and Michael Wooldridge. “Mean-payoff games with ω-regular specifications”. In:

AAMAS. 2021.
7Romain Brenguier and Jean-François Raskin. “Pareto Curves of Multidimensional Mean-Payoff Games”. In: CAV. 2015.
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How to characterise the core?

• In general, the core does not coincide with Pareto optimality

• But PO is still useful!

• For a given game G and C ⊆ N, we sequentialise into 2-player multi-mean-payoff game

GC = (V1,V2,E ,w), where

• C acts as player 1 who owns V1

• −C acts as player 2 who owns V2

• w : V1 ∪ V2 → Zc corresponds to k-dimensional vectors representing the weight functions of

C

• val(GC , s) is the set of values that can be enforced by C , and val(GC , s) =↓ PO(GC , s)

• Brenguier and Raskin8 showed that

1. val(GC , s) can be represented as finite union of polyhedra

2. For every polyhedron P, there is a vector v⃗ ∈ P whose representation is of poly size

8Brenguier and Raskin, “Pareto Curves of Multidimensional Mean-Payoff Games”.
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How to characterise the core?

Can we characterise the set of values corresponding to the core as a polyhedron?
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How to characterise the core?

Want: characterise the set of values corresponding to the core as a polyhedron

Lemma

The set val(GC ) can be represented by a finite union of a set of polyhedra PS(GC ), and each

polyhedron PC
j ∈ PS(GC ) is polynomially representable.

Lemma

If σ⃗ ∈ Core(G) then for each C ⊆ N and PC
j ∈ PS(GC ) there is a half-space H of PC

j such

that vector (payi (σ⃗))i∈C is in H (i.e., closed complement of H)

(payi (σ⃗))i∈C is NOT strictly contained in PC
j
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An intuitive example

s

(0, 0, 0)

m

(0, 2, 1)

t

(2, 1, 0)

b

(1, 0, 2)

(H,H, ∗)

(∗,T ,H)

(T , ∗,T )

∗

∗

∗

(H,T ,T )

(T ,H,H)

1 2 3

1

2

3

x3 ≤ 1

x2 ≤ 2

Q

R

P

H2 ∩ H3

x2

x3

Figure 1: Left: Arena for the example. Right: Graphical representation of val(G{2,3}). Coordinates

P,Q,R corresponds to the set PO(GN) = {(2, 1, 0), (0, 2, 1), (1, 0, 2)}. There is a beneficial deviation

by {2, 3} (dashed arrow) from P (the {1, 2}-Pareto optimal value) to Q (the {2, 3}-Pareto optimal

value).

14



An intuitive example

s

(0, 0, 0)

m

(0, 2, 1)

t

(2, 1, 0)

b

(1, 0, 2)

(H,H, ∗)

(∗,T ,H)

(T , ∗,T )

∗

∗

∗

(H,T ,T )

(T ,H,H)

1 2 3

1

2

3

x3 ≤ 1

x2 ≤ 2

Q

R

P

H2 ∩ H3

x2

x3

Figure 2: Left: Arena for the example. Right: Graphical representation of val(G{2,3}). Coordinates

P,Q,R corresponds to the set PO(GN) = {(2, 1, 0), (0, 2, 1), (1, 0, 2)}. There is a beneficial deviation

by {2, 3} (dashed arrow) from P (the {1, 2}-Pareto optimal value) to Q (the {2, 3}-Pareto optimal

value).

15



An intuitive example modified

s

(1, 1, 1)

m

(0, 2, 1)

t

(2, 1, 0)

b

(1, 0, 2)

(H,H, ∗)

(∗,T ,H)

(T , ∗,T )

∗

∗

∗

(H,T ,T )

(T ,H,H)

1 2 3

1

2

3

x3 ≤ 1

x2 ≤ 2

Q

R

P

S

H2 ∩ H3

x2

x3

Figure 3: Left: Arena for the modified example. Right: Graphical representation of val(G ′{2,3}).

Coordinates P,Q,R,S corresponds to the set PO(G ′N) = {(2, 1, 0), (0, 2, 1), (1, 0, 2), (1, 1, 1)}. There
is no beneficial deviation from S .

S ∈ H3. Indeed, for each C ⊆ N there is such a “blocking” half-space. If we take the

intersection of such blocking half-spaces and val(G ′N) we obtain {(1, 1, 1)}
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From intuition to characterisation

If the intersection of such blocking half-spaces and val(G ′N) is non-empty, then the core is

non-empty.

Theorem

Core(G) ̸= ∅ iff there exists a set of blocking half-spaces I such that

R =
⋂

H∈I H ∩ val(GN) ̸= ∅

R is a polyhedron representable polynomially wrt G, as such, there exists a polynomial

witness9 x⃗ ∈ R.

Theorem

Given a game G, if the core is non-empty, then there is σ⃗ ∈ Core(G) such that (payi (σ⃗))i∈N

can be represented polynomially in the size of G.

9Brenguier and Raskin, “Pareto Curves of Multidimensional Mean-Payoff Games”.

17



From intuition to characterisation

If the intersection of such blocking half-spaces and val(G ′N) is non-empty, then the core is

non-empty.

Theorem

Core(G) ̸= ∅ iff there exists a set of blocking half-spaces I such that

R =
⋂

H∈I H ∩ val(GN) ̸= ∅

R is a polyhedron representable polynomially wrt G, as such, there exists a polynomial

witness9 x⃗ ∈ R.

Theorem

Given a game G, if the core is non-empty, then there is σ⃗ ∈ Core(G) such that (payi (σ⃗))i∈N

can be represented polynomially in the size of G.

9Brenguier and Raskin, “Pareto Curves of Multidimensional Mean-Payoff Games”.

17



Strategies in the core and how to find them

• Strategies have arbitrarily large memories: no bounds on the search space

• We do not have to guess the strategies, only need to guess a polynomial witness vector

x⃗ ∈ R

• Finding strategies in the core can be reduced to finding x⃗ ∈ R

18



Strategies in the core and how to find them

• Strategies have arbitrarily large memories: no bounds on the search space

• We do not have to guess the strategies, only need to guess a polynomial witness vector

x⃗ ∈ R

• Finding strategies in the core can be reduced to finding x⃗ ∈ R

18



Rational Verification: Decision Problems

• Universality: all strategy profiles in the core satisfy a LTL property φ (A-Core)

• Existence: there exists a strategy profile in the core satisfying a LTL property φ

(E-Core)

• Stability: Is the core non-empty? (Non-Emptiness)

19



Coordination game revisited

• Non-Emptiness returns YES

• A-Core with φ := GFl ∧GFr returns YES

• E-Core with φ := Gm returns NO
m

(0, 0)

r

(0, 1)

l

(1, 0)

(L, L)

(∗,R) (R,R)

(L, ∗)

(L,R)

(R, L)

(L, L) (R,R)
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Solving Non-Emptiness

Given: game G
Non-Emptiness: Is it the case that Core(G) ̸= ∅?

Procedure:

1. Guess a vector x⃗ ∈ R

2. Check if x⃗ admits beneficial deviations, then return NO; otherwise return YES

• Step 1 is in NP

• Step 2 involves calling ΣP
2 oracle

• Non-Emptiness can be solved in ΣP
3
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Solving E-Core and A-Core

Given: Game G, formula φ.

E-Core: Is it the case that there exists some σ⃗ ∈ Core(G) such that σ⃗ |= φ?

A-Core: Is it the case that for all σ⃗ ∈ Core(G), we have σ⃗ |= φ?

Observations:

• A witness to E-Core would be a path π such that

1. payi (π))i∈N ≥ (payi (σ⃗)) for some σ⃗ ∈ Core(G)
2. π |= φ

• φ has an ultimately periodic model of size 2O(|φ|),10 thus the size of representation of

payi (π) is polynomial wrt G

10A. P. Sistla and E. M. Clarke. “The complexity of propositional linear temporal logics”. In: J. ACM (1985).
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Solving E-Core and A-Core
Procedure:

1. Guess a vector x⃗ ∈ R and set of states S ⊆ St

2. If all s ∈ S is “safe”, then

2.1 Produce a subgame G[S ] by removing all states s /∈ S

2.2 If there is π in G[S ] with payi (π) ≥ xi , ∀i ∈ N and π |= φ,

return YES

3. Return NO G

sinit

∀s ∈ S

x⃗ is safe in s

G[S ]

π

• Step 1 is in NP

• Step 2 is in ΣP
2

• Step 2.1 is in PTIME

• Step 2.2:

• If φ is in the full LTL: PSPACE

• If φ is in an “easy” fragment of LTL (e.g., GR(1)): PTIME

• Solving E-Core is in PSPACE (full LTL) or ΣP
3 (easy LTL fragment)

• Solving A-Core is in PSPACE (full LTL) or ΠP
3 (easy LTL fragment)
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Complexity landscape

Problem Finite Memory Memoryless11 NE12,13

Non-Emptiness ΣP
3 -c ΣP

2 NP-c

E-Core with LTL spec. PSPACE-c PSPACE-c

A-Core with LTL spec. PSPACE-c PSPACE-c

E-Core with GR(1) spec. ΣP
3 -c ΣP

2 NP-c

A-Core with GR(1) spec. ΠP
3 -c ΠP

2 coNP-c

Figure 4: Summary of complexity results. The NE column shows complexity results for the

corresponding decision problems with NE.

11Steeples, Gutierrez, and Wooldridge, “Mean-payoff games with ω-regular specifications”.
12M. Ummels and D. Wojtczak. “The Complexity of Nash Equilibria in Limit-Average Games”. In: CONCUR. 2011.
13Julian Gutierrez et al. “On Computational Tractability for Rational Verification”. In: IJCAI. 2019.
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Concluding remarks

• Characterisation of the core using discrete geometry

• Showed that in our setting, the core admits polynomial witnesses

• Tight complexity bounds for rational verification problems

Future work:

• Can we establish sufficient and necessary conditions of non-emptiness of the core in a

broader sense, e.g., quasi-concavity of utility functions14

• What can we do when the core is empty? Modify the games, e.g., utility functions, norms

to limit actions,...

• Can we use our characterisation here to extend ATL* with mean-payoff semantics?

14Herbert E Scarf. “On the existence of a cooperative solution for a general class of N-person games”. In: J. of Economic

Theory (1971).

25


