Verifying and Designing Equilibria in Multi-Agent Systems*

Muhammad Najib

Department of Computer Science, University of Oxford

RADICAL, Amsterdam, 26 August 2019

^{*}Published works are joint work with Julian Gutierrez, Giuseppe Perelli, and Michael Wooldridge.

- Introduction
- Rational Verification via Parity Games
- Tractable Cases of Rational Verification
- Equilibrium Design in Concurrent Games
- Conclusions

Outline

Introduction

- Rational Verification via Parity Games
- Tractable Cases of Rational Verification
- Equilibrium Design in Concurrent Games
- Conclusions

- How do we define correctness in multiagent systems?
- Each agent has her own goal, and the goals are not necessarily aligned
- Unlike classical verification, there is no single "litmus test" for system correctness

- Agents are rational
- Agents pursue their interests strategically
- An appropriate framework for studying strategic interaction between self-interested agents: **game theory**

(Classical) Model Checking

Equilibrium Checking

Games are playing on graph-like arenas of the form:

$$A = \langle \mathsf{N}, \mathsf{Ac}, \mathsf{St}, s_0, \mathsf{tr}, \lambda \rangle$$

- N (finite) set of agents;
- Ac (finite) set of actions;
- St (finite) set of states (s₀ initial state);
- tr : St \times Ac^N \rightarrow St transition function ^a;
- $\lambda : St \rightarrow 2^{AP}$ labelling function.

^aAt every state, agents take actions concurrently and move to the next state

Strategies

Strategy

Finite state machine $\sigma = \langle Q, \mathsf{St}, q_0, \delta, \tau \rangle$

- *Q*, internal state (*q*₀ initial state);
- $\delta: Q \times St \rightarrow Q$ internal transition function;
- $\tau: Q \rightarrow Ac$ action function.

A strategy is a recipe for the agent prescribing the action to take at every time-step of the game execution.

Play

Given a strategy assigned to every agent in A, denoted $\vec{\sigma}$, there is a unique possible execution $\pi(\vec{\sigma})$ called play. Note that plays can only be ultimately periodic. A game $\mathcal{G} = \langle A, pay_1, \dots, pay_{|N|} \rangle$ is defined by an arena and a list of payoff functions, one per each agent. For a game \mathcal{G} , a strategy profile $\vec{\sigma}$ is a *Nash equilibrium* of \mathcal{G} if, for every player *i* and strategy σ'_i , we have

$$\mathsf{pay}_i(\pi(\vec{\sigma})) \ge \mathsf{pay}_i(\pi((\vec{\sigma}_{-i}, \sigma'_i)))$$
 .

i.e., a player cannot improve her payoff by going "alone".

E-Nash

Given: a multiagent system \mathcal{G} and a temporal logic formula φ . Question: Is it the case that $\pi(\vec{\sigma}) \models \varphi$ in **some** $\vec{\sigma} \in NE(\mathcal{G})$?

Other rational verification problem:

- A-NASH: the dual of E-NASH (all $\vec{\sigma} \in NE(\mathcal{G})$)
- Non-Emptiness: special case of E-NASH ($\varphi = \top$)

[†]Michael Wooldridge et al. "Rational Verification: From Model Checking to Equilibrium Checking". In: *AAAI*. 2016.

Outline

Introduction

• Rational Verification via Parity Games

- Tractable Cases of Rational Verification
- Equilibrium Design in Concurrent Games
- Conclusions

Lemma

 π is sustained by a Nash equilibrium strategy profile iff every player j whose goal is not satisfied by π is punishable at π^a

^aJulian Gutierrez, Paul Harrenstein, and Michael Wooldridge. "Expresiveness and Complexity Results for Strategic Reasoning". In: *CONCUR*. 2015.

Nash equilibrium = Punishability + Memory

NE Characterisation

 $L = \mathsf{N} \setminus W$

- Memoryless/positional determinacy
- Solves the problem of keeping track deviating run
- Finite number of memoryless strategies
- Development of algorithms to solve PG (latest: quasipolynomial[‡])

[‡]Cristian S. Calude et al. "Deciding Parity Games in Quasipolynomial Time". In: *STOC*. 2017.

Workflow

Matches theoretical bound of 2EXPTIME for LTL Games

EVE (Equilibrium Verification Environment)

Open-source: https://github.com/eve-mas/eve-parity

EVE Online: http://eve.cs.ox.ac.uk/eve

EVE vs Other Tools

	EVE	PRALINE	MCMAS
Goal language	LTL	Büchi	LTL
Bisim. invariant strategies	Yes	No	No
Memoryful	Yes	Yes	No

Т

NON-EMPTINESS Experiment Result^{§¶}

Figure 1: Running time for NON-EMPTINESS Gossip Protocol.

Figure 2: Running time for NON-EMPTINESS Replica Control Protocol.

[§]Y-axis is in logarithmic scale. Time-out was set to 7200 seconds (2 hours).
 [¶]Julian Gutierrez et al. "EVE: A Tool for Temporal Equilibrium Analysis". In: ATVA. 2018.
 Muhammad Najib (University of Oxford) Verifying & Designing Equilibria in MAS RADICAL, Amsterdam, 26 August 2019

Outline

Introduction

• Rational Verification via Parity Games

• Tractable Cases of Rational Verification

- Equilibrium Design in Concurrent Games
- Conclusions

From Julian Gutierrez et al. "On Computational Tractability for Rational Verification". In: *IJCAI*. 2019

The language of *General Reactivity of rank 1*, denoted GR(1), is the fragment of LTL of formulae written in the following form^{\parallel}:

$$(\mathsf{GF}\psi_1 \wedge \ldots \wedge \mathsf{GF}\psi_m) \rightarrow (\mathsf{GF}\phi_1 \wedge \ldots \wedge \mathsf{GF}\phi_n),$$

where each subformula ψ_i and ϕ_i is a Boolean combination of atomic propositions.

^{||}Roderick Bloem et al. "Synthesis of Reactive(1) designs". In: *Journal of Computer and System Sciences* (2012).

Muhammad Najib (University of Oxford) Verifying & Designing Equilibria in MAS RADICAL, Amsterdam, 26 August 2019

For an infinite sequence $\beta \in \mathbb{R}^{\omega}$ of real numbers, let mp(β) be the *mean-payoff* value of β , that is,

$$\mathsf{mp}(\beta) = \lim \inf_{n \to \infty} \mathsf{avg}_n(\beta)$$

where, for $n \in \mathbb{N}$, we define $\operatorname{avg}_n(\beta) = \frac{1}{n} \sum_{j=0}^{n-1} \beta_j$.

A multi-player GR(1) game is a tuple $\mathcal{G}_{GR(1)} = \langle A, (\gamma_i)_{i \in \mathsf{N}}
angle$

- $A = \langle N, Ac, St, s_0, tr, \lambda \rangle$ is an arena,
- γ_i is the GR(1) goal for player *i*.

A multi-player mp game is a tuple $\mathcal{G}_{mp} = \langle A, (w_i)_{i \in \mathbb{N}} \rangle$,

- $A = \langle N, Ac, St, s_0, tr, \lambda \rangle$ is an arena
- $w_i: St \to \mathbb{Z}$ is a function mapping every state of the arena into an integer number.

	γ_i	arphi	E-Nash
	LTL	LTL	2EXPTIME-complete
$GR(1) \text{ games} \bigg\{$	GR(1)	LTL	?
	GR(1)	GR(1)	?
mp games $\left\{ ight.$	mp	LTL	?
	mp	GR(1)	?

E-NASH in GR(1) games: the procedure

Obtain *G^{-L}* by computing punishment region Pun_j(*G*). Can be done in polynomial time with respect to the size of both *G* and *γ_j* via reduction to Streett game.

E-NASH in GR(1) games: the procedure

2. Check whether there exists an ultimately periodic path π in G^{-L} such that π ⊨ φ ∧ Λ_{i∈W} γ_i holds.

Corollary (games with LTL specification)

The E-NASH problem for GR(1) games with an LTL specification is PSPACE-complete.

• Bottleneck: model checking LTL specification φ is PSPACE-complete.

Theorem (games with GR(1) specification)

Can be solved in time that is polynomial in |St|, |Ac|, and $|\varphi|$, $|\gamma_1|, \ldots, |\gamma_N|$ and exponential in the number of players |N|.

- Streett automaton emptiness: can be solved in polynomial time w.r.t the automaton's index and its number of states and transitions**.
- The problem is fixed-parameter tractable (FPT), parameterised in the number of players.

 ** Monika Rauch Henzinger and Jan Telle. "Faster Algorithms for the Nonemptiness of Streett Automata and for Communication Protocol Pruning". In: *SWAT*. 1996, Orna Kupferman. "Automata Theory and Model Checking". In: *Handbook of TCS* (2015).
 Muhammad Najib (University of Oxford) Verifying & Designing Equilibria in MAS RADICAL, Amsterdam, 26 August 2019

$\operatorname{E-NASH}$ in mp games: NE characterisation

 $L=\mathsf{N}\setminus W$

 $\operatorname{E-NASH}$ in mp games: the procedure

• Obtain $\mathcal{G}[z]$ by guessing vector $z \in \mathbb{R}^N$ and remove "non-secure" states.

$\operatorname{E-NASH}$ in mp games: the procedure

② Find an ultimately periodic path π in game G[z] such that π ⊨ φ and z_i ≤ pay_i(π) for every player i ∈ N.

Corollary (mp games with LTL specification)

The E-NASH problem for mp games with an LTL specification formula φ is PSPACE-complete.

 Using LTL^{Lim} model checking to find satisying run (PSPACE-complete^{††}).

^{††}Udi Boker et al. "Temporal Specifications with Accumulative Values". In: ACM Transactions on Computational Logic (2014).

Theorem (mp games with GR(1) specification)

The E-NASH problem for mp games with a GR(1) specification φ is NP-complete.

- Define a linear program of size polynomial in *G* to find an ultimately-periodic run π satisfying GR(1) specification φ s.t. ∀_{i∈N}, z_i ≤ pay_i(π).
- Lower bound: with $\varphi = \top \Rightarrow NE$ existence in mp games^{‡‡}.

^{‡‡}Michael Ummels and Dominik Wojtczak. "The Complexity of Nash Equilibria in Limit-Average Games". In: *CONCUR*. 2011.

γ_i	φ	E-Nash	A-Nash
LTL	LTL	2EXPTIME-complete	2EXPTIME-complete
GR(1)	LTL	PSPACE-complete	PSPACE-complete
GR(1)	GR(1)	FPT	FPT
mp	LTL	PSPACE-complete	PSPACE-complete
mp	GR(1)	NP-complete	coNP-complete

- Non-Emptiness:
 - LTL games: 2EXPTIME-complete
 - ► GR(1) games: PSPACE-complete/FPT
 - mp games: PSPACE-complete/NP-complete

Outline

Introduction

- Rational Verification via Parity Games
- Tractable Cases of Rational Verification

• Equilibrium Design in Concurrent Games

Conclusions

From Julian Gutierrez et al. "Equilibrium Design for Concurrent Games". In: CONCUR. 2019

Equilibrium Design

redesign the game such that individually rational behaviour leads to desired outcomes.

Intuition

Designers can incentivise players to achieve outcomes that are desirable from the temporal specification point of view.

Definition (Weak Implementation)

For a given game \mathcal{G} , a temporal specification φ and a budget $\beta \in \mathbb{N}$, find a subsidy scheme κ with $cost(\kappa) \leq \beta$ such that $(\mathcal{G}, \kappa, \varphi)$ solves E-NASH positively.

Definition (Strong Implementation)

For a given game \mathcal{G} , a temporal specification φ and a budget $\beta \in \mathbb{N}$, find a subsidy scheme κ with $cost(\kappa) \leq \beta$ such that $(\mathcal{G}, \kappa, \varphi)$ solves A-NASH positively.

For a given game G, we say that β is the optimal budget if it is the minimum required to solve weak or strong implementation, respectively.

Definition (Optimality) OPT-WI For a game \mathcal{G} , compute the optimal budget β for the Weak Implementation. OPT-SI For a game \mathcal{G} , compute the optimal budget β for the Strong Implementation. _

	LTL Spec.	GR(1) Spec.
Weak Implementation	PSPACE-complete	NP-complete
Strong Implementation	PSPACE-complete	Σ_2^P -complete
Opt-WI	FPSPACE-complete	FP ^{NP} -complete
Opt-SI	FPSPACE-complete	$FP^{\Sigma_2^P}$ -complete
EXACT-WI	PSPACE-complete	D ^P -complete
EXACT-SI	PSPACE-complete	D ₂ ^P -complete
UOPT-WI	PSPACE-complete	Δ_2^P -complete
UOPT-SI	PSPACE-complete	Δ_3^P -complete

Outline

Introduction

- Rational Verification via Parity Games
- Tractable Cases of Rational Verification
- Equilibrium Design in Concurrent Games

Conclusions

- Developed & implemented algorithmic techniques for rational verification
- Identified tractable cases for rational verification
- Introduced the concept of equilibrium design, and analysed complexity

Future work:

- Cooperative games
- Decidable cases of imperfect information games
- Consider social welfare in designing equilibrium