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Abstract

Verifying equilibria involves checking which temporal logic properties will hold in some
“stable” runs of a system composed of multiple agents which are assumed to behave ratio-
nally and strategically in pursuit of individual objectives. This paradigm is called rational
verification, and can be regarded as a counterpart to (classical) model checking for multi-
agent systems. In this talk, I will propose a practically amenable technique for rational
verification which relies on a reduction to the solution of a collection of parity games. This
approach has been implemented in a tool called EVE. I will also talk about some cases in
which the problem of rational verification is computationally tractable. In particular, it is
possible to reduce the complexity from 2EXPTIME to fixed-parameter tractable. Finally,
I will also introduce a concept called equilibrium design which is concerned in the design
of incentives so that a desirable equilibrium is obtained.

Rational Verification

In the rational verification problem, we desire to check which temporal logic properties are
satisfied by the system/game in equilibrium, that is, assuming players select strategies that form
a Nash equilibrium. A little more formally, let P1, . . . , Pn be the agents in our concurrent/multi-
agent system, and let NE(P1, . . . , Pn) denote the set of all computation runs of the system that
could be generated by agents selecting strategies that form a Nash equilibrium. Finally, let
ϕ be a temporal logic formula. Then, in the rational verification problem, we want to know
whether for some/every run π ∈ NE(P1, . . . , Pn) we have π |= ϕ.

Let (1, . . . , n) be the set of agents within a multiagent system. We assume that agents are
nondeterministic reactive programs/modules. Nondeterminism means that agents can freely
choose actions available to them without any authority telling them what to do. Reactive means
that agents are nonterminating as long as the system is running. This general framework can
be applied to different kinds of computational models, such as event structures [17], interpreted
systems [4], concurrent games [1], or multiagent planning systems [3].

A strategy for agent i is a rule that defines how the agent makes choices throughout the
run of the system. There are different ways to define strategy, but we assume that strategy is
behavioural and generally can think of it as a function from what an agent can “see” to the
choices available to them. We denote the set of stategies available to i by Σi. When each agent
has selected a strategy, we have a strategy profile ~σ = (σ1, . . . , σn). We assume that strategies
are deterministic, thus each strategy profile induces a unique run denoted by ρ(~σ). We write
ρ |= ϕ to denote that run ρ satisfies ϕ. We now define agents preferences over runs of the
system. We write ρ1 �i ρ2 to mean that an agent i with the goal γi prefers ρ1 at least as much
as ρ2, thus formally ρ1 �i ρ2 if and only if ρ2 |= γi implies ρ1 |= γi.
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We then define the standard game theoretic concept of Nash equilibrium. Let G =
〈(1, . . . , n), (γ1, . . . , γn)〉 be a multiagent system modelled as a game, and ~σ = (σ1, . . . , σn)
a strategy profile. We say ~σ is a Nash equilibrium of G if for all i and for all σ′i ∈ Σi, we have
ρ(σ) �i ρ(σ1, . . . , σ

′
i, . . . , σn). We write NE(G) to denote the set of Nash equilibria in G. With

these definitions established, we can now address the main problems in rational verification.
The concept of rational verification can be regarded as a counterpart to classical verification

with a more “restricted” condition. Given a multiagent system modelled as a (concurrent) game
G (as well as a property ϕ for Problem 2), we can capture the idea in these following decision
problems [18, 8].

Problem 1 (Non-Emptiness). Given a multiagent system G. Is it the case that NE(G) 6= ∅?

Problem 2 (E/A-Nash). Given a multiagent system G and temporal formula ϕ. Is it the case
that ρ(~σ) |= ϕ in any/all ~σ ∈ NE(G)?

Proposed Approach. The technique we develop to solve above-mentioned problems consists
of three steps. First, we build a Parity game GPAR from an input LTL game GLTL. Then—using a
characterisation of Nash equilibrium that separates players in the game into those that achieve
their goals in a Nash equilibrium (the “winners”, W ) and those that do not achieve their goals
(the “losers”, L)—for each set of players in the game, we eliminate nodes and paths in GPAR

which cannot be a part of a Nash equilibrium, thus producing a modified Parity game, G−LPAR.
Finally, in the third step, we use Streett automata on infinite words to check if the obtained
Parity game witnesses the existence of a Nash equilibrium.

The procedure presented above runs in doubly exponential time, matching the optimal upper
bound of the problem. In the first step we obtain a doubly exponential blowup. The underlying
structure M of the obtained Parity game GPAR is doubly exponential in the size of the goals
of the input LTL game GLTL, but the priority functions set (αi)i∈N is only (singly) exponential.
Then, in the second step, reasoning takes only polynomial time in the size of the underlying
concurrent game structure of GPAR, but exponential time in both the number of players and
the size of the priority functions set. Finally, the third step takes only polynomial time, leading
to an overall 2EXPTIME complexity.

Implementation. The procedure above is implemented in a tool called EVE1. Each system
component (agent/player) in EVE is represented as a SRML module, which consists of an in-
terface that defines the name of the module and lists a non-empty set of Boolean variables
controlled by the module, and a set of guarded commands, which define the choices available
to the module at each state. We refer to [16] for further details on the semantics of SRML. In
addition, we associate each module with a goal, which is specified as an LTL formula.

EVE2 is available online as webservice from http://eve.cs.ox.ac.uk/eve. EVE takes
as input a concurrent and multi-agent system described in SRML, with player goals and a
property ϕ to be checked specified in LTL. For Non-Emptiness, EVE returns “YES” (along
with a set of winning players W ) if the set of NE in the system is not empty, and returns
“NO” otherwise. For E-Nash (A-Nash), EVE returns “YES” if ϕ holds on some (all) NE of
the system, and “NO” otherwise. EVE also returns a witness for each “YES” instance as a
synthesised strategy profile.

1Originally appeared in the proceedings of ATVA’18 [10].
2EVE is open-source and the code can be obtained from https://github.com/eve-mas/eve-parity
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Tractable Rational Verification

Rational verification has been studied for a number of settings, including iterated Boolean
games, reactive modules games, and concurrent game structures [7, 8, 6, 9]. In all cases,
the problem is 2EXPTIME-complete. Rational verification is also closely related to rational
synthesis, which is also 2EXPTIME-complete both in the Boolean case [5] and with rational
environments [13]. All of the above cases only consider perfect information.

In this section3, I address the high-complexity issue of rational verification and provide
complexity results that greatly improve on the 2EXPTIME-complete result of the general case.
In particular, we consider games where the goals of players are represented as either GR(1)
formulae (an important fragment of LTL that can express most response properties of a concur-
rent and reactive system [2]), or mean-payoff utility functions (one of the most studied reward
and quality measures used in games for automated formal verification). In each case, we study
the rational verification problem for system specifications ϕ given as GR(1) formulae and as
LTL formulae, with respect to system models that are formally represented as concurrent game
structures [1]. Our main results show that in the cases above mentioned, the 2EXPTIME result
can be dramatically improved, to settings where rational verification can be solved in polyno-
mial space, NP, or even in polynomial time if the number of players in the game is assumed to
be fixed.

Designing Equilibrium

Mechanism design is the problem of designing a game such that, if players behave rationally,
then a desired outcome will be obtained [15]. In this section4, I present a new concept related to
mechanism design that we call equilibrium design. Equilibrium design is the design of subsidy
schemes (incentives) for concurrent games, so that a desired outcome (a Nash equilibrium in
the game) can be obtained. We model agents as synchronously executing concurrent processes,
with each agent receiving an integer payoff for every state the overall system visits; the overall
payoff an agent receives over an infinite computation path is then defined to be the mean payoff
over this path. While agents (naturally) seek to maximise their individual mean payoff, the
designer of the subsidy scheme wishes to see some temporal logic formula satisfied, either on
some or on every Nash equilibrium of the game.

We assume that the designer – an external principal – has a finite budget that is available for
making subsidies, and this budget can be allocated across agent/state pairs. By allocating this
budget appropriately, the principal can incentivise players away from some states and towards
others. Since the principal has some temporal logic goal formula, it desires to allocate subsidies
so that players are rationally incentivised to choose strategies so that the principal’s temporal
logic goal formula is satisfied in the path that would result from executing the strategies.
Following [14], we identify two variants of the principal’s mechanism design problem, which we
refer to as Weak Implementation and Strong Implementation. For these two problems,
we consider goals specified by LTL formulae or GR(1) formulae [2] and classify the complexity of
the problem. We then go on to study variations of these two problems, for example considering
optimality and uniqueness of solutions, and show that the complexities of all such problems lie
within the polynomial hierarchy, thus making them potentially amenable to efficient practical
implementations.

3To appear in the proceedings of IJCAI’19 [12].
4To appear in the proceedings of CONCUR’19 [11].
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