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Motivation Correctness Problem

Classical Verification

Given a system P and formal specification ϕ

Correctness: Does the behaviour of P reflect ϕ?
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Motivation Correctness Problem

Rational Verification

How do we define correctness in multiagent systems?

Each agent has her own goal, and the goals are not necessarily aligned

Unlike classical verification, there is no single “litmus test” for system
correctness
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Motivation Correctness Problem

Rational Verification

Agents are rational

Agents pursue their interests strategically

An appropriate framework for studying strategic interaction between
self-interested agents: game theory
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Motivation Nash Equilibrium

Nash Equilibrium

Many solution concepts have been proposed

Nash Equilibrium (NE) is the most widely-used

A player moving away from NE will be worse off

Moving away (from NE) is irrational
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Motivation Model Checking

Model Checking

A system P into a finite state model (e.g. Kripke structure)

MODEL CHECKER

MODEL

TEMPORAL LOGIC
PROPERTY φ

“TRUE”

Property φ is
true in MODEL

“FALSE”

Property φ is
not true in MODEL

Figure 1: Basic structure of model checking.
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Motivation Model Checking

Model Checking

Efficient model checking algorithm for CTL exists

LTL model checking is more complex (PSPACE-c)

Symbolic MC with BDDs allows very big number of states

Active research and development
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Framework Reactive Modules
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Framework Reactive Modules

SRML

SRML is a strict subset of Reactive Module Language (RML)

A module in SRML consist of:

interface: name, list of controlled Boolean variables
guarded commands: defines choices available at each state
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Framework Reactive Modules

SRML

Formally, an SRML module mi = (Φi , Ii ,Ui ), where:

Φi ⊆ Φ, set of controlled variables

Ii is a finite set of init guarded commands s.t. ∀g ∈ Ii , ctr(g) ⊆ Φi

Ui is a finite set of update guarded commands s.t. ∀g ∈ Ui ,
ctr(g) ⊆ Φi
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Framework Reactive Modules

SRML

module toggle controls x
init
:: > x ′ := >;
:: > x ′ := ⊥;
update
:: ¬x  x ′ := >;
:: x  x ′ := ⊥;

Figure 2: Example of module toggle in SRML.
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Framework Reactive Modules

SRML Arena

An SRML arena A = (N,Φ,m1, . . . ,mn)

N = {1, . . . , n} a set of agents

mi = (Φi , Ii ,Ui )

{Φ1, . . . ,Φn} is a partition of Φ
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Framework Reactive Module Games

Reactive Module Games

RMG G = (A, γ1, . . . , γn)

A = (N,Φ,m1, . . . ,mn)

γi is the goal (given by a temporal logic formula) of player i

γi in LTL, CTL formula for LTL, CTL RMG, respectively

Muhammad Najib (University of Oxford) Some Approaches to Rational Verification in Multiagent SystemsRADICAL, 2017 18 / 58



Framework Reactive Module Games

Reactive Module Games

RMG G = (A, γ1, . . . , γn)

A = (N,Φ,m1, . . . ,mn)

γi is the goal (given by a temporal logic formula) of player i

γi in LTL, CTL formula for LTL, CTL RMG, respectively

Muhammad Najib (University of Oxford) Some Approaches to Rational Verification in Multiagent SystemsRADICAL, 2017 18 / 58



Framework Reactive Module Games

Reactive Module Games

RMG G = (A, γ1, . . . , γn)

A = (N,Φ,m1, . . . ,mn)

γi is the goal (given by a temporal logic formula) of player i

γi in LTL, CTL formula for LTL, CTL RMG, respectively

Muhammad Najib (University of Oxford) Some Approaches to Rational Verification in Multiagent SystemsRADICAL, 2017 18 / 58



Framework Reactive Module Games

Reactive Module Games

RMG G = (A, γ1, . . . , γn)

A = (N,Φ,m1, . . . ,mn)

γi is the goal (given by a temporal logic formula) of player i

γi in LTL, CTL formula for LTL, CTL RMG, respectively

Muhammad Najib (University of Oxford) Some Approaches to Rational Verification in Multiagent SystemsRADICAL, 2017 18 / 58



Framework Reactive Module Games

Strategy

A strategy tells what action should be taken by a player in each
possible situation

A function that maps what an agent “sees” at each state to her
action (LTL RMG) or set of actions (CTL RMG)

Let V t
i ,V

t
−i be valuation of Φi ,Φ\Φi at time t, respectively

memoryless: σi : V t
−i → V t

i (LTL RMG), σi : V t
−i → 2V t

i (CTL RMG)

memoryful: σi : V
[0,t]
−i → V t

i (LTL RMG), σi : V
[0,t]
−i → 2V t

i (CTL
RMG)

Strategy in LTL RMG is deterministic, CTL RMG non-deterministic
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Framework Reactive Module Games

Strategy Profile

A strategy profile ~σ = (σ1, . . . , σn)

LTL RMG: ~σ induces a run (an infinite word) ρ(~σ)

CTL RMG: ~σ induces a Kripke structure K~σ
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Framework Reactive Module Games

Ex: P2P Protocol

Consider a P2P protocol with two peers: Alice and Bob

At each time-step peers either tries to download or upload

In order for one peer to download successfully, the other must be
uploading at the same time

Both peers are interested in downloading infinitely often
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Framework Reactive Module Games

P2PP in RMG

GP2P = (A, γa, γb)

A = ({a, b}, {ua, ub, da, db},ma,mb)

γa = GF(da ∧ ub), γb = GF(db ∧ ua)
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Framework Reactive Module Games

P2PP Arena in SRML

module ma controls ua, da module mb controls ub, db
init init
:: > u′a := >, d ′a := ⊥; :: > u′b := >, d ′b := ⊥;
:: > u′a := ⊥, d ′a := >; :: > u′b := ⊥, d ′b := >;
update update
:: > u′a := >, d ′a := ⊥; :: > u′b := >, d ′b := ⊥;
:: > u′a := ⊥, d ′a := >; :: > u′b := ⊥, d ′b := >;

Figure 3: P2PP arena in SRML.
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Framework Reactive Module Games

P2PP Structure

s0

u0,¬d0

u1,¬d1

s1

u0,¬d0

¬u1, d1

s2

¬u0, d0

u1,¬d1

s3

¬u0, d0

¬u1, d1

Figure 4: The structure of P2PP arena.
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Framework NE in RMG
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Framework NE in RMG

NE in RMG

~σ = (σ1, . . . , σi−1, σi , σi+1, . . . , σn)

~σ′ = (σ1, . . . , σi−1, σ
′
i , σi+1, . . . , σn)

Define preference relation %i :

~σ %i ~σ
′ iff ~σ′ |= γi implies ~σ |= γi .

A strategy profile ~σ is said to be a Nash equilibrium of G if for all
players i and all strategies ~σ′ = (σ1, . . . , σi−1, σ

′
i , σi+1, . . . , σn) we

have ~σ %i ~σ
′

Write NE (G ) for the set of pure strategy Nash equilibria
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Write NE (G ) for the set of pure strategy Nash equilibria
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Framework Decision Problems

Outline

1 Motivation
Correctness Problem
Nash Equilibrium
Model Checking

2 Framework
Reactive Modules
Reactive Module Games
NE in RMG
Decision Problems
Complexity

3 Existing Tools
MCMAS
EAGLE

4 Ongoing and Future Works
EAGLE with BDD CTL SAT
EVE
NE via Parity
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Framework Decision Problems

NE-Emptiness

Problem (NE-Emptiness)

Given a multiagent system G . Is it the case that NE (G ) 6= ∅?
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Framework Decision Problems

NE-Emptiness

Obviously, NE (GP2P) 6= ∅ is true

A run that visits s1 and s2 infinitely often

s0

u0,¬d0

u1,¬d1

s1

u0,¬d0

¬u1, d1

s2

¬u0, d0

u1,¬d1

s3

¬u0, d0

¬u1, d1
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Framework Decision Problems

E-Nash

Problem (E-Nash)

Given a multiagent system G and temporal formula ϕ. Is it the case that
ρ(~σ) |= ϕ in any ~σ ∈ NE (G )?
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Framework Decision Problems

E-Nash

Let ϕ = GF(da ∧ ub)

∃~σ ∈ NE (GP2P).ρ(~σ) |= ϕ is true

s0

u0,¬d0

u1,¬d1

s1

u0,¬d0

¬u1, d1

s2

¬u0, d0

u1,¬d1

s3

¬u0, d0

¬u1, d1
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Framework Decision Problems

A-Nash

Let ϕ = GF(da ∧ ub)

∀~σ ∈ NE (GP2P).ρ(~σ) |= ϕ is false
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u1,¬d1
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¬u1, d1

s2

¬u0, d0
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¬u1, d1
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Framework Decision Problems

NE-Membership

Problem (NE-Membership)

Given a multiagent system G and strategy profile ~σ. Is it the case that
~σ ∈ NE (G )?
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Framework Decision Problems

NE-Membership

Let ~σ = (σa, σb) where each σi prescribes only download

Then ~σ ∈ NE (G ) is true

s0
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Framework Complexity

Outline

1 Motivation
Correctness Problem
Nash Equilibrium
Model Checking

2 Framework
Reactive Modules
Reactive Module Games
NE in RMG
Decision Problems
Complexity

3 Existing Tools
MCMAS
EAGLE

4 Ongoing and Future Works
EAGLE with BDD CTL SAT
EVE
NE via Parity
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Framework Complexity

Computational Complexity Results

LTL RMG CTL RMG

NE-Emptiness 2EXPTIME-c 2EXPTIME-hard
E-Nash 2EXPTIME-c 2EXPTIME-hard
A-Nash 2EXPTIME-c 2EXPTIME-hard
NE-Membership PSPACE-c 2EXPTIME-c

Table 1: Overview of computational complexity results [Gutierrez et al., 2017]
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Existing Tools MCMAS

Outline

1 Motivation
Correctness Problem
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Existing Tools MCMAS

MCMAS

MCMAS [Lomuscio et al., 2015] uses interpreted systems
[Fagin et al., 1995] for representation

Uses global and local states to capture epistemic properties

Latest implementation supports ATL and SL

SL quite expressive, possible to reason about NE

Muhammad Najib (University of Oxford) Some Approaches to Rational Verification in Multiagent SystemsRADICAL, 2017 38 / 58



Existing Tools MCMAS

MCMAS

MCMAS [Lomuscio et al., 2015] uses interpreted systems
[Fagin et al., 1995] for representation

Uses global and local states to capture epistemic properties

Latest implementation supports ATL and SL

SL quite expressive, possible to reason about NE

Muhammad Najib (University of Oxford) Some Approaches to Rational Verification in Multiagent SystemsRADICAL, 2017 38 / 58



Existing Tools MCMAS

MCMAS

MCMAS [Lomuscio et al., 2015] uses interpreted systems
[Fagin et al., 1995] for representation

Uses global and local states to capture epistemic properties

Latest implementation supports ATL and SL

SL quite expressive, possible to reason about NE

Muhammad Najib (University of Oxford) Some Approaches to Rational Verification in Multiagent SystemsRADICAL, 2017 38 / 58



Existing Tools MCMAS

MCMAS

MCMAS [Lomuscio et al., 2015] uses interpreted systems
[Fagin et al., 1995] for representation

Uses global and local states to capture epistemic properties

Latest implementation supports ATL and SL

SL quite expressive, possible to reason about NE

Muhammad Najib (University of Oxford) Some Approaches to Rational Verification in Multiagent SystemsRADICAL, 2017 38 / 58



Existing Tools MCMAS

MCMAS

Pros:

Has been around for more than 10 years

Support GUI

Written in a fast language (C/C++)

Multiplatform

Symbolic model checking with BDDs

Cons:

Current implementation (SLK) only supports memoryless strategy

Verbosity of ISPL

No direct support for rational verification

Muhammad Najib (University of Oxford) Some Approaches to Rational Verification in Multiagent SystemsRADICAL, 2017 39 / 58



Existing Tools MCMAS

MCMAS

Pros:

Has been around for more than 10 years

Support GUI

Written in a fast language (C/C++)

Multiplatform

Symbolic model checking with BDDs

Cons:

Current implementation (SLK) only supports memoryless strategy

Verbosity of ISPL

No direct support for rational verification

Muhammad Najib (University of Oxford) Some Approaches to Rational Verification in Multiagent SystemsRADICAL, 2017 39 / 58



Existing Tools MCMAS

MCMAS

Pros:

Has been around for more than 10 years

Support GUI

Written in a fast language (C/C++)

Multiplatform

Symbolic model checking with BDDs

Cons:

Current implementation (SLK) only supports memoryless strategy

Verbosity of ISPL

No direct support for rational verification

Muhammad Najib (University of Oxford) Some Approaches to Rational Verification in Multiagent SystemsRADICAL, 2017 39 / 58



Existing Tools MCMAS

MCMAS

Pros:

Has been around for more than 10 years

Support GUI

Written in a fast language (C/C++)

Multiplatform

Symbolic model checking with BDDs

Cons:

Current implementation (SLK) only supports memoryless strategy

Verbosity of ISPL

No direct support for rational verification

Muhammad Najib (University of Oxford) Some Approaches to Rational Verification in Multiagent SystemsRADICAL, 2017 39 / 58



Existing Tools MCMAS

MCMAS

Pros:

Has been around for more than 10 years

Support GUI

Written in a fast language (C/C++)

Multiplatform

Symbolic model checking with BDDs

Cons:

Current implementation (SLK) only supports memoryless strategy

Verbosity of ISPL

No direct support for rational verification

Muhammad Najib (University of Oxford) Some Approaches to Rational Verification in Multiagent SystemsRADICAL, 2017 39 / 58



Existing Tools MCMAS

MCMAS

Pros:

Has been around for more than 10 years

Support GUI

Written in a fast language (C/C++)

Multiplatform

Symbolic model checking with BDDs

Cons:

Current implementation (SLK) only supports memoryless strategy

Verbosity of ISPL

No direct support for rational verification

Muhammad Najib (University of Oxford) Some Approaches to Rational Verification in Multiagent SystemsRADICAL, 2017 39 / 58



Existing Tools MCMAS

MCMAS

Pros:

Has been around for more than 10 years

Support GUI

Written in a fast language (C/C++)

Multiplatform

Symbolic model checking with BDDs

Cons:

Current implementation (SLK) only supports memoryless strategy

Verbosity of ISPL

No direct support for rational verification

Muhammad Najib (University of Oxford) Some Approaches to Rational Verification in Multiagent SystemsRADICAL, 2017 39 / 58



Existing Tools MCMAS

MCMAS

Pros:

Has been around for more than 10 years

Support GUI

Written in a fast language (C/C++)

Multiplatform

Symbolic model checking with BDDs

Cons:

Current implementation (SLK) only supports memoryless strategy

Verbosity of ISPL

No direct support for rational verification

Muhammad Najib (University of Oxford) Some Approaches to Rational Verification in Multiagent SystemsRADICAL, 2017 39 / 58



Existing Tools EAGLE

Outline

1 Motivation
Correctness Problem
Nash Equilibrium
Model Checking

2 Framework
Reactive Modules
Reactive Module Games
NE in RMG
Decision Problems
Complexity

3 Existing Tools
MCMAS
EAGLE

4 Ongoing and Future Works
EAGLE with BDD CTL SAT
EVE
NE via Parity
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Existing Tools EAGLE

EAGLE

EAGLE [Toumi et al., 2015] is a prototype tool for equilibrium
checking

Particularly solves NE-Membership

Accepts CTL as specification language

Needs two inputs: system (modelled as CTL RMG)
G = (A, γ1, . . . , γn) and strategy profile ~σ = (σ1, . . . , σn)
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Existing Tools EAGLE

EAGLE

EAGLE’s basic algorithm:

1 Build K~σ

2 If ∃i ∈ N s.t. (K~σ 6|= γi )
1 and Sat(ACTL ∧ γi )2 returns true, then

output “NO”; otherwise “YES”

1calling a CTL model checker oracle
2calling a CLT SAT oracle; ACTL is CTL representation of A = (N,Φ,m1, . . . ,mn)
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Existing Tools EAGLE

EAGLE

Pros:

Uses SRML which is quite compact

Strategies are not memoryless

No need to devise meta-algorithm for rational verification

Cons:

Still a prototype and not optimised yet

Uses CTL which relatively less intuitive from designer POV

CTL SAT bottleneck

No GUI
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Ongoing and Future Works EAGLE with BDD CTL SAT

Outline

1 Motivation
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3 Existing Tools
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4 Ongoing and Future Works
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NE via Parity
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Ongoing and Future Works EAGLE with BDD CTL SAT

EAGLE with BDD CTL SAT

As reported in [Toumi et al., 2015], CTL SAT subroutine is the
bottleneck

Can we check CTL SAT symbolically with BDD [Marrero, 2005]?
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Ongoing and Future Works EVE
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Ongoing and Future Works EVE

EVE

RMG G described in SRML code

Parse input

A system M in ISPL mapped from G Sl formula φNE

MCMAS checks φNE against M

“TRUE”

There exists Nash equilibrium

“FALSE”

There exists no Nash equilibrium

Figure 5: The implementation structure of EVE.
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Ongoing and Future Works EVE

EVE

RMG G described in SRML code

SL BDD symbolic MC

“TRUE”

There exists Nash equilibrium

“FALSE”

There exists no Nash equilibrium

Figure 6: Inject RMG directly into SL BDD symbolic model checker.
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Ongoing and Future Works NE via Parity

Outline
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Ongoing and Future Works NE via Parity

The Punisher(s)

Lemma ([Gutierrez et al., 2015])

ρ is sustained by a Nash equilibrium strategy profile iff every player j
whose goal is not satisfied by ρ is punishable at ρ
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Ongoing and Future Works NE via Parity

The Punisher(s)

Nash equilibrium = Punishability + Memory

Muhammad Najib (University of Oxford) Some Approaches to Rational Verification in Multiagent SystemsRADICAL, 2017 51 / 58



Ongoing and Future Works NE via Parity

Why Parity?

Memoryless determinacy

Solves the problem of keeping track deviating run

Finite number of memoryless strategies

Development of algorithms to solve PG (latest: quasipolynomial
([Calude et al., 2017], best paper award STOC 2017))
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Ongoing and Future Works NE via Parity

Basic Structure3

GLTL V GPAR

Compute punishing region PUN

GPAR V GW
PAR from PUNN\W ,W ⊆ N (winning coalition)

If ∃W win in GW
PAR , then yes; otherwise no

Matches theoretical bound of 2EXPTIME for LTL RMGs

3ongoing joint work: Julian Gutierrez, Giuseppe Perelli, Michael Wooldridge
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Ongoing and Future Works NE via Parity

Demo

Consider a network composed of 2 clients: clienta, clientb and 2
servers: server1, server2

clienta handles urgent tasks, so everytime it sends a request, needs to
be served immediately

clientb doesn’t handle urgent task, no need to be served immediately

server1 is an old server, it needs longer rest time

server2 needs shorter rest time
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Demo

γa = G(ra → X(s1 ∨ s2))

γb = G(ra → F(s1 ∨ s2))

γ1 = GF(¬s1 ∧ X¬s1)

γ2 = GF¬s2
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