
Some Approaches to Rational Verification in Multiagent

Systems

Muhammad Najib

University of Oxford, Oxford, UK
mnajib@cs.ox.ac.uk

Abstract

Recently, with the rapid advances of artificial intelligence, many researchers from
verification community are starting to work on the analysis of systems composed of
(semi)autonomous components known as multiagent systems. With this increasing in-
terest, many concepts for reasoning about the behaviour of such systems are proposed.
Among them is rational verification which is concerned with establishing whether a prop-
erty can be sustained in a system composed of rational agents. In our research, we study
different approaches to realise the notion of rational verification and strive for a concrete
tool implementing the paradigm. We begin by introducing a formal framework as the
foundation of our approaches. We then discuss the ability of current techniques/tools to
perform rational verification and present some methods we have developed to expand the
limits. We conclude with our ongoing work and possible future directions.

Introduction

We are interested in the verification of concurrent multiagent systems, in which processes are
assumed as open systems. In this approach, a system is modelled as a game. System components
are represented as players with their own strategies, possible computation runs are the plays
of the game, and the required property of each player is specified with a goal that the player
wants to satisfy. The usage of this game-theoretic approach gives rise to a natural question:
Does the system have a stable behaviour? This question boils down to checking whether the
strategies chosen by the players are in equilibrium [23]. This setting is such that, instead of
model checking, we talk about equilibrium checking [33]. In fact, model checking is a special
case of equilibrium checking, where cooperation is being forced to the players or the system is
simply modelled as a single-player game.

Our ongoing work looks at the different approaches to perform the concept of rational
verification. We begin by introducing a formal framework as the foundation of our approaches.
We then discuss the ability of existing tools available to perform rational verification, including
their limitations. Given this, we then present some methods we have proposed to expand the
limits. We conclude with our future work and possible directions.

Framework

Let (1, . . . , n) be the set of agents within a multiagent system. We assume that agents are
nondeterministic reactive programs/modules. Nondeterminism means that agents can freely
choose actions available to them without any authority telling them what to do. Reactive means
that agents are nonterminating as long as the system is running. This general framework can
be applied to different kinds of computational models, such as event structures [32], interpreted
systems [9], concurrent games [2], or multiagent planning systems [4].

A strategy for agent i is a rule that defines how the agent makes choices throughout the
run of the system. There are different ways to define strategy, but we assume that strategy is

Some Approaches to Rational Verification in Multiagent Systems M. Najib

behavioural and generally can think of it as a function from what an agent can “see” to the
choices available to them. We denote the set of stategies available to i by Σi. When each agent
has selected a strategy, we have a strategy profile ~σ = (σ1, . . . , σn). We assume that strategies
are deterministic, thus each strategy profile induces a unique run denoted by ρ(~σ). We write
ρ |= ϕ to denote that run ρ satisfies ϕ. We now define agents preferences over runs of the
system. We write ρ1 �i ρ2 to mean that an agent i with the goal γi prefers ρ1 at least as much
as ρ2, thus formally ρ1 �i ρ2 if and only if ρ2 |= γi implies ρ1 |= γi.

We then define the standard game theoretic concept of Nash equilibrium. Let G =
〈(1, . . . , n), (γ1, . . . , γn)〉 be a multiagent system modelled as a game, and ~σ = (σ1, . . . , σn)
a strategy profile. We say ~σ is a Nash equilibrium of G if for all i and for all σ′

i ∈ Σi, we have
ρ(σ) �i ρ(σ1, . . . , σ

′
i, . . . , σn). We write NE(G) to denote the set of Nash equilibria in G. With

these definitions established, we can now address the main problems in rational verification.
The concept of rational verification can be regarded as a counterpart to classical verification

with a more “restricted” condition. Given a multiagent system modelled as a (concurrent)
game G (as well as a property ϕ and strategy profile ~σ for, respectively, Problem 2 and 3), we
can capture the idea in these following decision problems [33].

Problem 1 (NE-Emptiness). Given a multiagent system G. Is it the case that NE(G) 6= ∅?

Problem 2 (E/A-Nash). Given a multiagent system G and temporal formula ϕ. Is it the
case that ρ(~σ) |= ϕ in any/all ~σ ∈ NE(G)?

Problem 3 (NE-Membership). Given a multiagent system G and strategy profile ~σ. Is it the
case that ~σ ∈ NE(G)?

Now, we need a language to model the systems. For this, we use SRML [29] which is a strict
subset of RML [1], the modelling language used in some established model checkers such as
(Nu)SMV [19, 7], MOCHA [3], and PRISM [16]. An agent i is modelled as an SRML module
mi = (Φi, Ii, Ui), where Φi is a set of Boolean variables controlled by the agent, Ii a finite set
of variable values initialisation commands, and Ui a set of variable values update commands.
Due to space constraint, we will not discuss in detail the semantics of SRML here. However, it
has been shown that SRML can model concurrent game-like systems such as Reactive Modules
Games [11] and concurrent game structures [29].

Rational Verification with Existing Tools

The focus on open systems verification has led to the development of richer and more expressive
formalisms. While LTL, CTL, and CTL* are adequately expressive for reasoning about compu-
tations of some systems which behaviour are completely deterministic, they are obviously not
appropriate for systems with nondeterministic components. Alternating-time temporal logic
(ATL*) is one of newer formalisms in which one can reason about time and strategic abilites of
players [2]. However, ATL* is still not powerful enough to reason about Nash equilibria 1.

Strategy Logic (SL) is a more expressive logic and, in fact, stictly subsumes ATL*. We
can quantify strategies explicitely, thus powerful enough to express Nash equilibria. BDD-
based symbolic model checking for SL is implemented in MCMAS [17]. Despite the potential
of SL, there is currently no explicit support to do rational verification in MCMAS. We have
to manually devise a meta-algorithm performing rational verification in MCMAS input file.
Recently, we proposed a prototype tool called EVE [22] that addresses Problem 1 by bridging

1There exists an extension of ATL (a strict subset of ATL*) called ATLES [31] that can express Nash
equilibria, however, it is shown only in extensive games.

2

Some Approaches to Rational Verification in Multiagent Systems M. Najib

SRML with MCMAS. However, with great power comes great cost. Model checking with SL
is hard, and the fragments that are useful for expressing the existence of Nash equilibra have
undecidable satisfiability problem in perfect recall setting [20, 21]. Current implementation of
SL in MCMAS that can answer Problem 1 is only under imperfect recall semantics.

Another existing (prototype) tool for rational verification is EAGLE [28]. This tool specifi-
cally addresses Problem 3. It uses CTL as its specification language and relies on two oracles:
CTL model checker and CTL SAT solver. In EAGLE detailed report, it is shown that the
bottleneck is the CTL satisfiability subroutine [27]. A closer tool to EAGLE is PRALINE [5],
however, it focuses on synthesis/constructing strategies in Nash equilibrium.

Ongoing and Future Work

We are currently working on an approach to solve problems in rational verification via parity.
One of the fundamental properties of parity games is the property of memoryless determinacy.
The main idea is by transforming a concurrent game with temporal logic goals into a game
with parity condition goals, we can exploit the memoryless determinacy of parity games to
our advantage. Solving parity game played on a finite graph is in NP ∩ Co-NP, or more
precisely UP ∩ Co-UP [8, 15]. In practice, there are many deterministic algorithms have been
invented such as recursive method in [34], local µ-calculus model checking in [26], small progress
algorithm [13, 12], strategy improvement algorithm [30, 24]. Although there is currently no
polynomial algorithm found, subexponential [14, 25] and quasi-polynomial [6] algorithms have
been proposed.

We have developed an algorithm that specifically solves Problem 1 and conjectured that it
matches its theoretical bound shown in [10]. We are also working on extending it to be able to
address Problem 2 and 3. While we are working on the theoretical side, a tool implementing
the algorithm is also currently being built. The tool uses SRML syntax very close to the one
described in [29] 2.

Other work that we are considering is optimising EAGLE with BDD-based CTL satisfiability
[18] instead of tableaux-based currently used in EAGLE’s library. Another thing is finding a
way to directly inject SRML structure in EVE into BDD-based model checker, instead of going
through MCMAS dedicated input language. With these works, we are hoping to be able to
increase the tools perfomance.

For future work, we see a number of directions we can pursue. Although Nash equilibrium
is one of the most widely used solution concepts in game theory, it would be a good idea to
consider other solution concepts. It is also useful to extend the specifications beyond current
assumptions, e.g., quantitative and probabilistic, as well as stochastic setting so that more
general agent’s beliefs and preferences can be captured. Finally, from an implementation point
of view, it would be helpful to have a more user-friendly interface for operating the tool such
as via GUI.

References

[1] R. Alur and T. A. Henzinger. Reactive modules. Formal Methods in System Design, 15(11):7–48,
July 1999.

[2] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. Journal of the
ACM, 49(5):672–713, Sept. 2002.

2This SRML style is, in fact, also used in EVE.

3

Some Approaches to Rational Verification in Multiagent Systems M. Najib

[3] R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K. Rajamani, and S. Taşiran. Mocha:
Modularity in model checking. In CAV 1998: Tenth International Conference on Computer-aided
Verification, (LNCS Volume 1427), pages 521–525. Springer-Verlag: Berlin, Germany, 1998.

[4] R. Brafman, C. Domshlak, Y. Engel, and M. Tennenholtz. Planning games. In Proceedings of the
Twenty-First International Joint Conference on Artificial Intelligence (IJCAI-09), 2009.

[5] R. Brenguier. PRALINE: A Tool for Computing Nash Equilibria in Concurrent Games, pages
890–895. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[6] C. S. Calude, S. Jain, B. Khoussainov, W. Li, and F. Stephan. Deciding parity games in quasipoly-
nomial time. STOCS, 2017. To appear.

[7] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani,
and A. Tacchella. Nusmv 2: An opensource tool for symbolic model checking. In Proceedings
of the 14th International Conference on Computer Aided Verification, CAV ’02, pages 359–364,
London, UK, UK, 2002. Springer-Verlag.

[8] E. Emerson, C. S. Jutla, and A. Sistla. On model checking for the -calculus and its fragments.
Theoretical Computer Science, 258(1):491 – 522, 2001.

[9] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About Knowledge. The MIT Press:
Cambridge, MA, 1995.

[10] J. Gutierrez, P. Harrenstein, and M. Wooldridge. Iterated boolean games. Inf. Comput., 242(C):53–
79, June 2015.

[11] J. Gutierrez, P. Harrenstein, and M. Wooldridge. From model checking to equilibrium checking:
Reactive modules for rational verification. Artif. Intell., 248:123–157, 2017.

[12] K. Heljanko, M. Keinnen, M. Lange, and I. Niemel. Solving parity games by a reduction to sat.
Journal of Computer and System Sciences, 78(2):430 – 440, 2012. Games in Verification.

[13] M. Jurdzinski. Small progress measures for solving parity games. In Proceedings of the 17th Annual
Symposium on Theoretical Aspects of Computer Science, STACS ’00, pages 290–301, London, UK,
UK, 2000. Springer-Verlag.

[14] M. Jurdziński, M. Paterson, and U. Zwick. A deterministic subexponential algorithm for solving
parity games. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete
Algorithm, SODA ’06, pages 117–123, Philadelphia, PA, USA, 2006. Society for Industrial and
Applied Mathematics.

[15] M. Jurdziski. Deciding the winner in parity games is in up co-up. Information Processing Letters,
68(3):119 – 124, 1998.

[16] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic real-time
systems. In G. Gopalakrishnan and S. Qadeer, editors, Proc. 23rd International Conference on
Computer Aided Verification (CAV’11), volume 6806 of LNCS, pages 585–591. Springer, 2011.

[17] A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: a model checker for the verification of multi-agent
systems. In CAV, volume 5643 of LNCS, pages 682–688. Springer, 2009.

[18] W. Marrero. Using bdds to decide CTL. In Tools and Algorithms for the Construction and
Analysis of Systems, 11th International Conference, TACAS 2005, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April
4-8, 2005, Proceedings, pages 222–236, 2005.

[19] K. L. McMillan. The SMV System, pages 61–85. Springer US, Boston, MA, 1993.

[20] F. Mogavero, A. Murano, G. Perelli, and M. Y. Vardi. Reasoning about strategies: On the model-
checking problem. CoRR, abs/1112.6275, 2011.

[21] F. Mogavero, A. Murano, and L. Sauro. On the boundary of behavioral strategies. In LICS, pages
263–272. IEEE Computer Society, 2013.

[22] M. Najib. A tool for temporal logic equilibrium analysis of concurrent games. Technical report,
University of Oxford, 2016.

[23] M. J. Osborne and A. Rubinstein. A Course in Game Theory. The MIT Press: Cambridge, MA,

4

Some Approaches to Rational Verification in Multiagent Systems M. Najib

1994.

[24] S. Schewe. An Optimal Strategy Improvement Algorithm for Solving Parity and Payoff Games,
pages 369–384. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[25] S. Schewe. Solving parity games in big steps. Journal of Computer and System Sciences, 84:243
– 262, 2017.

[26] P. Stevens and C. Stirling. Practical model-checking using games, pages 85–101. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1998.

[27] A. Toumi. Equilibrium checking in reactive modules games. Technical report, University of Oxford,
2015.

[28] A. Toumi, J. Gutierrez, and M. Wooldridge. Theoretical Aspects of Computing - ICTAC 2015:
12th International Colloquium, Cali, Colombia, October 29-31, 2015, Proceedings, chapter A Tool
for the Automated Verification of Nash Equilibria in Concurrent Games, pages 583–594. Springer
International Publishing, Cham, 2015.

[29] W. van der Hoek, A. Lomuscio, and M. Wooldridge. On the complexity of practical ATL model
checking. In Proceedings of the Fifth International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS-2006), Hakodate, Japan, 2005.

[30] J. Vöge and M. Jurdziński. A Discrete Strategy Improvement Algorithm for Solving Parity Games,
pages 202–215. Springer Berlin Heidelberg, Berlin, Heidelberg, 2000.

[31] D. Walther, W. van der Hoek, and M. Wooldridge. Alternating-time temporal logic with ex-
plicit strategies. In Proceedings of the 11th Conference on Theoretical Aspects of Rationality and
Knowledge, TARK ’07, pages 269–278, New York, NY, USA, 2007. ACM.

[32] G. Winskel. Event structures, pages 325–392. Springer Berlin Heidelberg, Berlin, Heidelberg, 1987.

[33] M. Wooldridge, J. Gutierrez, P. Harrenstein, E. Marchioni, G. Perelli, and A. Toumi. Rational
verification: From model checking to equilibrium checking. In AAAI Conference on Artificial
Intelligence, Phoenix, Arizona, USA, 2016.

[34] W. Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite
trees. Theoretical Computer Science, 200(1):135 – 183, 1998.

5

