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Dialectics

Aristotle (384-322
BC)

Aristotle wrote about syllogism and the rules for debating (dialectics)
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Dialectics

A dialogue (game) between two people.
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Dialectics

Aristotle (384-322
BC)

P. Lorenzen
(1915-1994)

C. Hamblin
(1922-1985)

Aristotle wrote about syllogism and the rules for debating (dialectics)

Paul Lorenzen wrote about dialogical logic in the 50s.

Charles Hamblin† wrote “Mathematical Models of Dialogue” in the
70s.

†Fun fact: Hamblin introduced Reverse Polish Notation.
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Determinacy

E. Zermelo
(1871-1953)

Ernst Zermelo’s theorem for finite, perfect information games (e.g.
Chess, Go, Tic-Tac-Toe):
if a player is in a winning position, then they can always force a win
no matter what strategy the other player may employ ‡

‡“ber eine Anwendung der Mengenlehre auf die Theorie des Schachspiels” (1913).
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Determinacy

E. Zermelo
(1871-1953)

Chess (15th c.-present)

Chess: either White can force a win, or Black can force a win,
or both sides can force at least a draw. We don’t know which
case is true, because the game tree is too BIG.

Shannon number (conservative lower bound): 10120. For perspective,
1082 atoms in the observable universe.
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Determinacy

E. Zermelo
(1871-1953)

Tic-tac-toe (?-present)

Tic-tac-toe is a solved game: both sides can force a draw.
Assuming best play.

Game tree size: 26,830. Easy to check with computer.
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Determinacy

D. Gale
(1921-2008)

F. Stewart
(1917-2011)

David Gale and Frank Stewart proved for infinite games.§

Gale-Stewart Theorem

Every open or closed game G (W ) is determined.

§Gale, D. and F. M. Stewart (1953). ”Infinite games with perfect information”.
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Determinacy

Abaelardus and Hlose in the manuscript Roman de la Rose (14th c.)

There exists a strategy for Eloise, such that for all strategies of Abelard,
Eloise wins.

There exists x , for all y such that P(x , y).
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FOL and Games

Alfred Tarski (1901-1983).

In the early 1930s Alfred Tarski proposed a definition of truth of
first-order sentences.

‘There exists x , for all y such that P(x , y)’ is true
There is an object a such that the sentence ‘for all y such that
P(a, y)’ is true.
There is an object a for every object b such that the sentence
‘P(a, b)’ is true
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FOL and Games

L. Henkin (1921-2006)

Leon Henkin extended Alfred Tarski’s definition of truth.

For all x0 exists y0 such that for all x1 exists y1... P(x0, y0, x1, y1, ...)

Abelard chooses an object a0 for x0, then Eloise chooses e0 for y0,
Abelard chooses a1 for x1, then Eloise e1 for y1 and so on.
We have P(a0, e0, a1, e1, ...)
Skolemnisation: P(a0, f0(a0), a1, f1(a0, a1), ...)
The Skolem functions f0, f1 etc. define a winning strategy for Eloise.¶

¶Henkin, L. (1961). “Some remarks on infinitely long formulas”. In J. of Symbolic
Logic.
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FOL and Games

L. Henkin (1921-2006)

Leon Henkin extended Alfred Tarski’s definition of truth.

For all x0 exists y0 such that for all x1 exists y1... P(x0, y0, x1, y1, ...)

Abelard chooses an object a0 for x0, then Eloise chooses e0 for y0,
Abelard chooses a1 for x1, then Eloise e1 for y1 and so on.
We have P(a0, e0, a1, e1, ...)
Skolemnisation: P(a0, f0(a0), a1, f1(a0, a1), ...)
The Skolem functions f0, f1 etc. define a winning strategy for Eloise.‖

A connection to Gale-Stewart Theorem (determinacy of infinite games)!
‖Henkin, L. (1961). “Some remarks on infinitely long formulas”. In J. of Symbolic

Logic.
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FOL and Games

J. Hintikka (1929-2015)

Jaakko Hintikka applied games on conjunctions and disjunctions.

ϕ ∧ ψ as a universally quantified statement, i.e.,
“every one of the sentences ϕ,ψ holds”

to play game G (ϕ ∧ ψ), Abelard chooses whether the game should
proceed as G (ϕ) or G (ψ).

Analogously for disjunctions: Eloise determines how the game
G (ϕ ∨ ψ) should proceed.
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Types of Games

How do we model games?

Two major perspective:

1 Games in extensive form

2 Games in strategic/normal form
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Types of Games: extensive form

Explicit temporal structure

Each non-terminal node owned by one player (whose turn)
Edges correspond to possible moves/actions

18 / 93



Types of Games: extensive form

Explicit temporal structure
Each non-terminal node owned by one player (whose turn)

Edges correspond to possible moves/actions

18 / 93



Types of Games: extensive form

Explicit temporal structure
Each non-terminal node owned by one player (whose turn)
Edges correspond to possible moves/actions

18 / 93



Types of Games: extensive form

Who has winning strategy?
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Types of Games: extensive form

Who has winning strategy? Eloise.

If Abelard chooses a then choose d , else choose c.
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Who has winning strategy? Eloise.
If Abelard chooses a then choose d , else choose c.
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Types of Games: extensive form

What about this?
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Types of Games: extensive form

What about this? Abelard.

Choose b.

22 / 93



Types of Games: extensive form

What about this? Abelard.
Choose b.
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Types of Games: strategic/normal form

Emphasise players’ available strategies

No temporal structure
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Types of Games: strategic/normal form

Who has winning strategy?
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Types of Games: strategic/normal form

Who has winning strategy? Eloise.

Choose b
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Types of Games: strategic/normal form

Who has winning strategy? Eloise. Choose b
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Types of Games: strategic/normal form

Who has winning strategy?
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Types of Games: strategic/normal form

Who has winning strategy? Nobody.
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Which model is appropriate for the Rock-Paper-Scissors game?

By Enzoklop - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=27958688

28 / 93



From http://gametheory101.com/
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Modal Logic

Let τ a non-empty countable set, AP a set of atomic propositions.
ML(τ,AP) is recursively defined as:

ϕ ::= p | ¬ϕ |ϕ ∨ ϕ | 〈a〉ϕ

where p ∈ AP and a ∈ τ . [a]ϕ ≡ ¬〈a〉¬ϕ.

A model for ML(τ,AP) is a relational (Kripke) structure
M = (St, (Ra)a∈τ ,V ), where St is a non-empty set of nodes
(worlds/states), Ra ⊆ St× St, and, V : St→ 2AP .

S. Kripke (1940-)
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Modal Logic: semantics

We interpret ML(τ,AP) over models as follows:

M, s |= p iff p ∈ V (s),

M, s |= ¬ϕ iff M, s 6|= ϕ

M, s |= ϕ ∨ ψ iff M, s |= ϕ orM, s |= ψ

M, s |= 〈a〉ϕ iff there exists s ′ ∈ St with sRas
′ and M, s ′ |= ϕ

M, s |= [a]ϕ iff for all s ′ ∈ St, if sRas
′ then M, s ′ |= ϕ
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suppose all edges are labelled a

〈a〉p satisfied in s1?

yes.

[a]q satisfied in s1?

no.

〈a〉p satisfied in s4?

no.

[a]p satisfied in s4?

yes.
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Modal Logic for Extensive Games

We can think of extensive form game structure as a model for ML(τ,AP)
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Modal Logic for Extensive Games

ϕE := [moveA]〈moveE 〉WinE

Is the formula ϕE satisfied by the model?
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ϕE := [moveA]〈moveE 〉WinE

Is the formula ϕE satisfied by the model? YES.

ϕE expresses “Eloise has a winning strategy”
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Modal Logic for Extensive Games

ϕA := ¬ϕE = 〈moveA〉[moveE ]¬WinE

Is the formula ϕA satisfied by the model?
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Modal Logic for Extensive Games

ϕA := ¬ϕE = 〈moveA〉[moveE ]¬WinE

Is the formula ϕA satisfied by the model? NO (by law of excluded middle).

Zermelo’s theorem: Eloise has a winning strategy iff Abelard does not have
one.
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Unstable Game

Everytime players try to fix their actions, one of them wants to change the
action, i.e., the game is unstable

Zermelo’s theorem does not apply here!

40 / 93



Unstable Game

Everytime players try to fix their actions, one of them wants to change the
action, i.e., the game is unstable

Zermelo’s theorem does not apply here!

40 / 93



Stable Game

This game is stable: Eloise always plays b, Abelard is indifference between
c and d .

We can predict the outcome of the game above.
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Solution Concept

How do we predict the outcome of a game? Use solution concepts.

a solution concept is a formal rule for predicting how a game will be played.

There are many, but the most important is Nash equilibrium

J. Nash (1928-2015) 26 pages, 2 citations
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Game Structure

A strategic/normal form is a structure:

(N,Σ1, ...,Σn, u1, ..., un)

where

N = {1, ..., n} is the set of players;

Σi is set of possible strategies for player i ∈ N;

ui : Σ1 × · · · × Σn → R is the utility function for player i ∈ N.

Notice that the utility of player i depends not only on her actions, but on
the actions of others (similarly for other agents). For player i to find the
best action involves deliberating about what others will do, taking into
account the fact that they will also try to maximise their utility taking into
account how player i will act.
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Eloise & Abelard Unstable Game
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Eloise & Abelard Unstable Game

N = {Eloise,Abelard}

ΣE = {a, b},ΣA = {c , d}
uE (a, c) = 0 uE (a, d) = 1 uE (b, c) = 1 uE (b, d) = 0
uA(a, c) = 1 uA(a, d) = 0 uA(b, c) = 0 uA(b, d) = 1
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Strategy Profiles

A strategy profile is a tuple of strategies, one for each player:

~σ = (σ1, ..., σi , ..., σn) ∈ Σ1 × · · · × Σi × · · · × Σn

We denote the strategy profile obtained by replacing the ith component of
~σ with σ′i by

(~σ−i , σ
′
i )

And so we have:
(~σ−i , σ

′
i ) = (σ1, ..., σ

′
i , ..., σn)
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(Pure Strategy) Nash Equilibrium

For a game G = (N, (Σi )i∈N , (ui )i∈N)

a strategy profile ~σ is a Nash equilibrium (NE) if there is no player i ∈ N
and strategy σ′i ∈ Σi such that

ui (~σ−i , σ
′
i ) > ui (~σ).

A player cannot benefit by deviating from a Nash equilibrium.
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Eloise & Abelard Unstable Game

~σ = (a, c), uA(a, c) = 1, uE (a, c) = 0.

Eloise can benefit: uE (b, c) = 1.

For each ~σ ∈ ΣE × ΣA, there’s always a beneficial deviation for a
player.

There is NO NE.
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Eloise & Abelard Stable Game

~σ = (b, c), ~σ′ = (b, d), both are NE.

52 / 93



Eloise & Abelard Stable Game

~σ = (b, c), ~σ′ = (b, d), both are NE.

52 / 93



The Prisoner’s Dilemma

Abelard and Eloise are collectively charged with a crime and held in
separate cells, with no way of meeting or communicating.

if one confesses and the other does not, the confessor will be freed,
and the other will be jailed for three years;

if both confess, then each will be jailed for two years.

Both know that if neither confesses, then they will each be jailed for
one year.
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The Prisoner’s Dilemma

in (c, c), Eloise wants to deviate to (d , c)

Abelard wants to deviate from (d , c) to (d , d)

Simmetric reasoning if Abelard deviates first from (c , c)

(d , d) is the NE.
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Bad Equilibrium

Previously, we looked at the Prisoner’s Dilemma game.

The NE is “bad”.

This kind of game happens in real life: e.g., nuclear arms reduction,
CO2 reduction, doping in sport.

Can we achieve cooperation?
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Arguments for Cooperation

We are altruistic

Abelard and Eloise care about each other

The shadow of the future...
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The Iterated Prisoner’s Dilemma

Play PD more than once

If you know you will be meeting the other person again, would you
still want to defect?
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Finitely Repeated Prisoner’s Dilemma

suppose you both know that you will play the game exactly n times.

What should you do? Imagine yourself playing the final round.

In the final round you would want to defect to gain that extra bit of
payoff

Then the round n− 1 is the last “real” round, and you want to defect
there too, and so on...

This is backward induction

Theorem

Iterated PD with a fixed, finite, pre-determined, commonly known number
of rounds, has one NE: defection at every step.
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Infintely Repeated Games

Suppose you play the game an infinite number of rounds

How to measure utility over infinite plays?
Sums to infinity does not work.

How to model strategies?
Need to define strategies for infinitely many rounds.
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Utility Functions for Infinite Runs

Limit of means: computing the average payoff over the infinite run

For a given infinite run

ω0ω1ω2 · · ·ωk · · ·

where ωk ∈ Σ1 × · · · × Σn, the value of such a run for player i is

lim
T→∞

1

T

T∑
k=1

ui (ωk)

The value is not always well defined. But if we represent strategies as
deterministic finite automata, then we have well defined value.
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Strategies as Automata

We represent strategies as deterministic finite automata (transducers)

Example above is an automaton strategy “ALLD”, which always
defects.

Value inside a state is the action selected; edges are actions of other
player.
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The GRIM Strategy

I cooperate until you defect, at which point I flip to punishment mode: I defect
forever after.
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The TIT-FOR-TAT Strategy

What does this strategy do?
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Automaton vs Automaton

Theorem

Deterministic finite automata playing against each other will eventually
enter a finite repeating sequence of outcomes, i.e., the resulting run will be

α · βω

where α, β are regular expressions and ω is the infinite iteration operator.
The average utility of an infinite run is the average utility of the finite
sequence β.
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ALLC vs ALLC

ALLC: cooperate forever

round: 0 1 2 3 4 · · ·
ALLC: C C C C C · · · average utility = -1
ALLC: C C C C C · · · average utility = -1

This is not a NE: either player would do better to choose another strategy
(e.g., ALLD).
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ALLC vs ALLD

ALLC ALLD

round: 0 1 2 3 4 · · ·
ALLC: C C C C C · · · average utility = -3
ALLD: D D D D D · · · average utility = 0

This is not a NE: ALLC would do better to choose another strategy (e.g.,
ALLD)
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ALLD vs ALLD

ALLD: defect forever

round: 0 1 2 3 4 · · ·
ALLD: D D D D D · · · average utility = -2
ALLD: D D D D D · · · average utility = -2

This is a NE (basically same as in one-shot case). But it is a bad one!
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GRIM vs GRIM

round: 0 1 2 3 4 · · ·
GRIM: C C C C C · · · average utility = -1
GRIM: C C C C C · · · average utility = -1

This is a NE! Rationally sustained cooperation.
The threat of punishment keeps players in line.
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Nash Folk Theorem

Define security value as the best utility that player i can guarantee in a
game, no matter what other players do.

Theorem

In an infinitely repeated game, every outcome in which every player gets at
least their security value can be sustained as a Nash equilibrium.

Corollary

In the infinitely repeated Prisoners Dilemma, mutual cooperation can be
sustained as an equilibrium.

Single shot and repeated games may have different sets of NE!

70 / 93



Nash Folk Theorem

Define security value as the best utility that player i can guarantee in a
game, no matter what other players do.

Theorem

In an infinitely repeated game, every outcome in which every player gets at
least their security value can be sustained as a Nash equilibrium.

Corollary

In the infinitely repeated Prisoners Dilemma, mutual cooperation can be
sustained as an equilibrium.

Single shot and repeated games may have different sets of NE!

70 / 93



Outline

1 Connection between Logic and Games
Games for Logic
Types of Games
Logic for Reasoning about Games
Game Dynamics

2 Logic and Games for Verification
Iterated Games
Temporal Logic in Games
Further Directions

71 / 93



Formal Verification

Fernndez, Darvaz, Blanco (2016)
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Model Checking
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Model Checking As Games

Model checking problems can be cast as strategy problems for
Hintikka games.

Played by two players: Verifier (Eloise) and Falsifier (Abelard)

“Eloise has a strategy such that for all Abelard’s strategies, the
specification is true in the model”.

For systems that run “forever” we use infinitely repeated games
and appropriate logic (e.g. LTL, CTL)
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Propositional Linear Temporal Logic (LTL)

A standard language for talking about infinite state sequences.

> truth constant
p atomic propositions
¬ϕ negation
ϕ ∨ ψ disjunction

Xϕ in the next state...
Fϕ will eventually be the case that ϕ
Gϕ is always the case that ϕ
ϕUψ always the case ϕ until ψ
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Example

F¬sleepy

eventually I will not be sleepy (a liveness property)
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Example

G¬crash

the program will never crash (a safety property)
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Example

GFeatRice

I will eat rice infinitely often
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Example

FG¬alive

eventually will come a time at which I am not alive forever after
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Example

(¬takeExam) U zulassung

you may not take Logic exam until you have a Zulassung
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Model for LTL

LTL formulae are usually interpreted in terms of Kripke structure.

Xp is true in s1: s1s2, s1s3

Xq is not true in s1: s1s3

FGp is true in s1: e.g., s1s
ω
2 , s1(s2s3)ω, s1(s3s2)ω, etc.
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Multi-Agent Systems

Now consider a system composed of multiple entities (players/agents).
Each entity may have different (not necessarily conflicting) goal.

https://people.csail.mit.edu/jamesm/project-MultiRobotSystemsEngineering.php
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Multi-Agent Systems

Now consider a system composed of multiple entities (players/agents).
Each entity may have different (not necessarily conflicting) goal.

Each autonomous car may have different destination
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Correctness Problem

How do we define correctness in multi agent systems?

Agents are rational

Agents pursue their interests strategically

Some possible behaviour may not arise

We need to predict the behaviour of the systems ⇒ Nash equilibrium
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Equilbrium Checking

We take into the account of player preferences
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Multi-Agent Systems as Games

Multi-agent systems modelled as multi-player games.

Games are played on graph-like (Kripke structure) arena:

A = (N,Ac, St, s0, tr, λ)

N (finite) set of agents;

Ac (finite) set of actions;

St (finite) set of states (s0 initial state);

tr : St× AcN → St transition function a;

λ : St→ 2AP labelling function.

aAt every state, agents take actions concurrently and move to the next state
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Strategies

Strategy

Finite state automaton σ = 〈Q,St, q0, δ, τ〉

Q, internal state (q0 initial state);

δ : Q × St→ Q internal transition function;

τ : Q → Ac action function.

A strategy is a recipe for the agent prescribing the action to take at every
time-step of the game execution.

Play

Given a strategy assigned to every agent in A, denoted ~σ, there is a unique
possible execution π(~σ) called play.
Note that plays can only be ultimately periodic, i.e., of the form α · βω
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Games and Nash Equilibria

A games is given by G = (A, γ1, ..., γn), where γi is the goal of player
i in LTL formula.

For a game G, strategy profile ~σ is a Nash equilibrium if there is no
player i and strategy σ′i such that

π(~σ) |= ¬γi =⇒ π((~σ−i , σ
′
i )) |= γi

A player cannot benefit by deviating from a Nash equilibrium.
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Rational Verification∗∗

Non-Emptiness

Given: a game G
Question: Does NE exist in G?

Is the game stable?

E-Nash

Given: a game G and a LTL formula ϕ
Question: Is there any NE that satisfies ϕ?

Is there any NE in which cars ignore traffic lights?

∗∗Wooldridge et al. “Rational Verification: From Model Checking to Equilibrium
Checking”. In: AAAI. 2016.
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Tools

EVE (http://eve.cs.ox.ac.uk/)

Other related tools:

MCMAS (https://vas.doc.ic.ac.uk/software/mcmas/): memoryless
strategies

PRALINE: Büchi-defineable goals, instead of LTL

PRISM-games (https://www.prismmodelchecker.org/games/):
stochastic games with CTL goals.
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Probabilistic Systems ⇒ stochastic games (PRISM-games††,
Probabilistic Strategy Logic‡)

What if the players can cooperate? cooperative games (other solution
concept: e.g., CORE‡‡)

Repairing games: designing equilibria, instead of just verifying
equilibria, we want to introduce desired ones ∗ †.

††Kwiatkowska et al., (2020), PRISM-games 3.0: Stochastic Game Verification with
Concurrency, Equilibria and Time.
‡Kwiatkowska et al., (2019), Probabilistic Strategy Logic
‡‡Gutierrez, Kraus, Wooldridge, (2019), Cooperative Concurrent Games.
∗Almagor, Avni, Kupferman, (2015), Repairing Multi-Player Games
†Gutierrez et al., (2019), Equilibrium Design for Concurrent Games.
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