Automated Temporal Equilibrium Analysis: Verification and Synthesis of Multi-Player Games

Julian Gutierrez¹ Muhammad Najib² Giuseppe Perelli³ Michael Wooldridge⁴ 30th International Joint Conference on Artificial Intelligence (IJCAI-21)

¹Faculty of Information Technology, Monash University

²Department of Computer Science, University of Kaiserslautern

³Department of Computer, Automation, and Business Engineering, La Sapienza University of Rome

⁴Department of Computer Science, University of Oxford

AI Systems in Our Lives

• More AI systems integrated in our lives

AI Systems in Our Lives

- More AI systems integrated in our lives
- E.g. Siri, Alexa, trading softwares, autonomous cars...

AI Systems in Our Lives

- More AI systems integrated in our lives
- E.g. Siri, Alexa, trading softwares, autonomous cars...
- Multiple interacting semi-autonomous software components (agents): multi-agent systems (MAS).

Multi-Agent Systems

• System composed of multiple entitites (players/agents): autonomous cars.

Multi-Agent Systems

- System composed of multiple entitites (players/agents): autonomous cars.
- Each agent may have different (not necessarily antagonistic) goal: each car has unique destination.

Multi-Agent Systems Correctness

• We can use the "classical" approach in formal verification, however...

- We can use the "classical" approach in formal verification, however...
- Agents are rational

- We can use the "classical" approach in formal verification, however...
- Agents are rational
- Agents pursue their goals/preferences strategically

- We can use the "classical" approach in formal verification, however...
- Agents are rational
- Agents pursue their goals/preferences strategically
- Some *possible* behaviour may not arise

• Autonomous cars crossing an intersection

- Autonomous cars crossing an intersection
- Most of them (are expected to) cross without crashing with each other

- Autonomous cars crossing an intersection
- Most of them (are expected to) cross without crashing with each other
- Cross and crash is also a *possible* behaviour of the system

- Autonomous cars crossing an intersection
- Most of them (are expected to) cross without crashing with each other
- Cross and crash is also a *possible* behaviour of the system
- But cross and crash is not a *rational* behaviour

- Autonomous cars crossing an intersection
- Most of them (are expected to) cross without crashing with each other
- Cross and crash is also a *possible* behaviour of the system
- But cross and crash is not a *rational* behaviour
- They would rather do something else (not crash), thus it's not a stable behaviour

Multi-Agent Systems Correctness

• Is the system correct with respect to the set of stable behaviours?

- Is the system correct with respect to the set of stable behaviours?
- Stable behaviours \Rightarrow Nash equilibria via game theory

- Is the system correct with respect to the set of stable behaviours?
- Stable behaviours \Rightarrow Nash equilibria via game theory
- Turn MAS into multi-player game

From Verification to Rational Verification

From Verification to Rational Verification

E-Nash

Given: Game \mathcal{G} , temporal property φ . Question: Is there any Nash Equilibrium $\vec{\sigma}$ in \mathcal{G} such that $\pi(\vec{\sigma}) \models \varphi$?

E-Nash

Given: Game \mathcal{G} , temporal property φ . Question: Is there any Nash Equilibrium $\vec{\sigma}$ in \mathcal{G} such that $\pi(\vec{\sigma}) \models \varphi$?

A-Nash

Given: Game \mathcal{G} , temporal property φ . Question: Does $\pi(\vec{\sigma}) \models \varphi$ hold for every Nash Equilibrium $\vec{\sigma}$ in \mathcal{G} ? **Theorem (Complexity)**

For the case of both the specification φ and the agents goals γ_i expressed as LTL formulas, rational verification is 2EXPTIME-Complete.¹

¹M. Wooldridge et al. "Rational Verification: From Model Checking to Equilibrium Checking". In: *AAAI*. 2016, pp. 4184–4191; Julian Gutierrez, Paul Harrenstein, and Michael J. Wooldridge. "From model checking to equilibrium checking: Reactive modules for rational verification". In: *Artificial Intelligence* 248 (2017), pp. 123–157.

Rational Verification

E-Nash

```
Given: Game \mathcal{G}, temporal property \varphi.
Question: Is there any Nash Equilibrium \vec{\sigma} in \mathcal{G} such that \pi(\vec{\sigma}) \models \varphi?
```

A-Nash

```
Given: Game \mathcal{G}, temporal property \varphi.
Question: Does \pi(\vec{\sigma}) \models \varphi hold for every Nash Equilibrium \vec{\sigma} in \mathcal{G}?
```

Both decision problems above can be reduced to the following Non-Emptiness Given: Game \mathcal{G} . Question: Is there any Nash Equilibrium in \mathcal{G} ?

Games

A multi-player LTL game is a tuple $\mathcal{G}_{LTL} = (\mathcal{M}, \lambda, (\gamma_i)_{i \in \mathbb{N}})$

- $\mathcal{M} = (N, (Ac_i)_{i \in N}, St, s_0, tr)$ is a concurrent game structure (CGS)²,
- γ_i is the LTL goal for player *i*.
- $\lambda : \mathsf{St} \to 2^\mathsf{AP}$ is a labelling function

LTL

$\varphi ::= \top \mid p \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{X} \varphi \mid \varphi \,\mathsf{U} \,\varphi$

LTL formulae interpreted w.r.t. (π, t, λ) , where π is a path over some multi-player game, $t \in \mathbb{N}$ is a temporal index into π .

²As usual: N agents; Ac_i actions of player i; St states; s_0 initial state; tr transition function.

Games

A (2-player) *parity* game is a tuple $H = (V_0, V_1, E, \alpha)$

- zero-sum turn-based
- $V = V_0 \cup V_1$
- $E \subseteq V \times V$
- $\alpha: V \to \mathbb{N}$ is a labelling priority function

Player 0 wins if the smallest priority that occurs infinitely often in the infinite play is even. Otherwise, player 1 wins. Can be solved in NP \cap coNP^a.

^aMarcin Jurdziński. "Deciding the winner in parity games is in UP \cap co-UP". In: Information Processing Letters (1998).

A multi-player *parity* game is a tuple $\mathcal{G}_{PAR} = (\mathcal{M}, (\alpha_i)_{i \in \mathbb{N}})$

- $\mathcal{M} = (N, (Ac_i)_{i \in N}, St, s_0, tr)$ is a concurrent game structure (CGS) ³,
- $\alpha_i : St \to \mathbb{N}$ is the goal of player *i*, given as a priority function over St.

³As usual: N agents; Ac_i actions of player *i*; St states; s_0 initial state; tr transition function.

Strategies and Plays

Strategy

Finite state machine $\sigma_i = \langle S_i, s_i^0, \delta_i, \tau_i \rangle$

- S_i , internal state (s_i^0 initial state);
- $\delta_i : S_i \times Ac \rightarrow S_i$ internal transition function;
- $\tau_i : S_i \to Ac_i$ action function.

Strategies and Plays

Strategy

Finite state machine $\sigma_i = \langle S_i, s_i^0, \delta_i, \tau_i \rangle$

- *S_i*, internal state (*s*⁰_{*i*} initial state);
- $\delta_i : S_i \times Ac \rightarrow S_i$ internal transition function;
- $\tau_i : S_i \to Ac_i$ action function.

A strategy is a recipe for the agent prescribing the action to take at every time-step of the game execution. A strategy profile $\vec{\sigma} = \langle \sigma_1, \ldots, \sigma_N \rangle$ assigns a strategy to each agent in the arena.

Strategies and Plays

Strategy

Finite state machine $\sigma_i = \langle S_i, s_i^0, \delta_i, \tau_i \rangle$

- *S_i*, internal state (*s*⁰_{*i*} initial state);
- $\delta_i : S_i \times Ac \rightarrow S_i$ internal transition function;
- $\tau_i : S_i \to Ac_i$ action function.

A strategy is a recipe for the agent prescribing the action to take at every time-step of the game execution. A strategy profile $\vec{\sigma} = \langle \sigma_1, \ldots, \sigma_N \rangle$ assigns a strategy to each agent in the arena.

Play

Given a strategy assigned to every agent in A, denoted $\vec{\sigma}$, there is a unique possible execution $\pi(\vec{\sigma})$ called play.

Note that plays can only be ultimately periodic.

Nash Equilibria

Preference Relation

Let w_i be γ_i if \mathcal{G} is an LTL game, and be α_i if \mathcal{G} is a Parity game. For two strategy profiles $\vec{\sigma}$ and $\vec{\sigma}'$ in \mathcal{G} , we have

```
\pi(\vec{\sigma}) \succeq_i \pi(\vec{\sigma}') if and only if \pi(\vec{\sigma}') \models w_i implies \pi(\vec{\sigma}) \models w_i.
```

Nash Equilibria

Preference Relation

Let w_i be γ_i if \mathcal{G} is an LTL game, and be α_i if \mathcal{G} is a Parity game. For two strategy profiles $\vec{\sigma}$ and $\vec{\sigma}'$ in \mathcal{G} , we have

```
\pi(\vec{\sigma}) \succeq_i \pi(\vec{\sigma}') if and only if \pi(\vec{\sigma}') \models w_i implies \pi(\vec{\sigma}) \models w_i.
```

Nash Equilibrium

a strategy profile $\vec{\sigma}$ is a Nash equilibrium of \mathcal{G} if, for every player *i* and strategy $\sigma'_i \in \Sigma_i$, we have

 $\pi(\vec{\sigma}) \succeq_i \pi((\vec{\sigma}_{-i}, \sigma'_i))$

where $(\vec{\sigma}_{-i}, \sigma'_i)$ denotes $(\sigma_1, \ldots, \sigma_{i-1}, \sigma'_i, \sigma_{i+1}, \ldots, \sigma_n)$, the strategy profile where the strategy of player *i* in $\vec{\sigma}$ is replaced by σ'_i .

i.e., no player can benefit by changing its strategy unilaterally.

Theorem (NE characterisation)

Let $NE(\mathcal{G})$ be the set of Nash equilibria in \mathcal{G} . A strategy profile $\vec{\sigma} \in NE(\mathcal{G})$

if and only if

the path $\pi = \pi(\vec{\sigma})$ is such that, for every $k \in \mathbb{N}$, the pair (s_k, \vec{a}^k) of the k-th position of π is punishing secure ⁴ for every $j \in Lose(\pi)$. ⁵ Where $\vec{a}^k = \langle a_1, ..., a_n \rangle$ is an action profile at k.

Along π , no player *j* can unilaterally get its goal γ_j achieved.

⁴Punishing secure: agent *j* does not have a strategy σ'_j that wins against $\vec{\sigma}_{-j}$, i.e. $\pi(\vec{\sigma}_{-j}, \sigma'_j) \models \gamma_j$. ⁵Here Lose(π) = { $j \in \mathbb{N} : \pi \not\models \gamma_j$ } are the agents that are not satisfied over π .

NE Characterisation via Local Reasoning

• Memory is needed to satisfy LTL goal

NE Characterisation via Local Reasoning

- Memory is needed to satisfy LTL goal
- Memory is NOT necessary for (2-player) parity games (memoryless/positional determinacy)

NE Characterisation via Local Reasoning

- Memory is needed to satisfy LTL goal
- Memory is NOT necessary for (2-player) parity games (memoryless/positional determinacy)
- Reason locally by converting each γ_i into deterministic parity word automaton (DPW) $\mathcal{A}_i = \langle 2^{AP}, Q, q^0, \rho, \alpha \rangle.$

NE Characterisation via Local Reasoning

- Memory is needed to satisfy LTL goal
- Memory is NOT necessary for (2-player) parity games (memoryless/positional determinacy)
- Reason locally by converting each γ_i into deterministic parity word automaton (DPW) $A_i = \langle 2^{AP}, Q, q^0, \rho, \alpha \rangle.$
- Then build $\mathcal{G}_{LTL} = (\mathcal{M}, \lambda, (\gamma_i)_{i \in \mathbb{N}})$ into $\mathcal{G}_{PAR} = (\mathcal{M}', (\alpha'_i)_{i \in \mathbb{N}})$, where $\mathcal{M}' = (\mathbb{N}, (Ac_i)_{i \in \mathbb{N}}, St', s'_0, tr')$ and $(\alpha'_i)_{i \in \mathbb{N}}$:
 - $\mathsf{St}' = \mathsf{St} \times \bigotimes_{i \in \mathsf{N}} Q_i$ and $s'_0 = (s_0, q_1^0, \dots, q_n^0)$;
 - for each state $\bar{(s, q_1, \ldots, q_n)} \in St'$ and action profile \vec{a} , $tr'((s, q_1, \ldots, q_n), \vec{a}) = (tr(s, \vec{a}), \rho_1(q_1, \lambda(s)), \ldots, \rho_n(q_n, \lambda(s));$
 - $\alpha'_i(s, q_1, \ldots, q_n) = \alpha_i(q_i).$

Invariances

Lemma (Goal Invariance)

Let \mathcal{G}_{LTL} be an LTL game and \mathcal{G}_{PAR} its associated Parity game. Then, for every strategy profile $\vec{\sigma}$ and player *i*, it is the case that $\pi(\vec{\sigma}) \models \gamma_i$ in \mathcal{G}_{LTL} if and only if $\pi(\vec{\sigma}) \models \alpha_i$ in \mathcal{G}_{PAR} .

Lemma (Goal Invariance)

Let \mathcal{G}_{LTL} be an LTL game and \mathcal{G}_{PAR} its associated Parity game. Then, for every strategy profile $\vec{\sigma}$ and player *i*, it is the case that $\pi(\vec{\sigma}) \models \gamma_i$ in \mathcal{G}_{LTL} if and only if $\pi(\vec{\sigma}) \models \alpha_i$ in \mathcal{G}_{PAR} .

Theorem (NE Invariance)

Let \mathcal{G}_{LTL} be an LTL game and \mathcal{G}_{PAR} its associated Parity game. Then, $NE(\mathcal{G}_{LTL}) = NE(\mathcal{G}_{PAR})$.

Visualising NE Characterisation

 $\bigcap_{i \in Lose} Pun_i(\mathcal{G}_{PAR})$ is the punishing region for Lose

Computing Punishing Region

For a \mathcal{G}_{PAR} and a (to-be-punished) player *j*. We turn \mathcal{G}_{PAR} into a 2-player zero-sum parity game $H_j = (V_0, V_1, E, \alpha)$ between player *j* (Player 1) and (coalition) player N_{-j} (Player 0). Circular states are in V_0 .

$$(s_1) \longrightarrow (s_2) \qquad (s_1, \vec{a}_{-j}) \longrightarrow (s_2)$$

punishing region for Lose = $\bigcap_{j \in Lose} Pun_j(\mathcal{G}_{PAR})$

Computing Punishing Region

For a \mathcal{G}_{PAR} and a (to-be-punished) player *j*. We turn \mathcal{G}_{PAR} into a 2-player zero-sum parity game $H_j = (V_0, V_1, E, \alpha)$ between player *j* (Player 1) and (coalition) player \mathbb{N}_{-j} (Player 0). Circular states are in V_0 .

$$(s_1) \longrightarrow (s_2) \qquad (s_1, \vec{a}_{-j}) \longrightarrow (s_2)$$

punishing region for Lose = $\bigcap_{j \in \text{Lose}} \text{Pun}_j(\mathcal{G}_{\text{PAR}})$

Corollary

Computing $Pun_i(\mathcal{G}_{PAR})$ can be done in polynomial time with respect to the size of the underlying graph of the game \mathcal{G}_{PAR} and exponential in the size of the priority function α_i , that is, to the size of the range of α_i . Moreover, there is a memoryless strategy $\vec{\sigma}_i$ that is a punishment against player *i* in every state $s \in Pun_i(\mathcal{G}_{PAR})$.

Finding NE Run

How do we compute $\pi(\vec{\sigma})$? Is there such run $\pi(\vec{\sigma})$ inside the punishing region?

• $\pi(\vec{\sigma})$ must be accepting for each $\alpha_i, i \in Win = N \setminus Lose$.

- $\pi(\vec{\sigma})$ must be accepting for each $\alpha_i, i \in Win = N \setminus Lose$.
- Solve emptiness problem of DPWs intersection $\times_{i \in \text{Win}} \mathcal{A}^i$

- $\pi(\vec{\sigma})$ must be accepting for each $\alpha_i, i \in Win = N \setminus Lose$.
- Solve emptiness problem of DPWs intersection $\times_{i \in \text{Win}} A^i$
- Intersection of DPWs might involve exponential blowup

- $\pi(\vec{\sigma})$ must be accepting for each $\alpha_i, i \in Win = \mathbb{N} \setminus Lose$.
- Solve emptiness problem of DPWs intersection $X_{i \in \text{Win}} A^i$
- Intersection of DPWs might involve exponential blowup
- Each parity condition $\alpha = (F_1, \dots, F_n)$ is a Streett condition $((E_1, C_1), \dots, (E_m, C_m))$ with $m = \lceil \frac{n}{2} \rceil$ and $(E_i, C_i) = (F_{2i+1}, \bigcup_{j \le i} F_{2j})$, for each $0 \le i \le m$

- $\pi(\vec{\sigma})$ must be accepting for each $\alpha_i, i \in Win = N \setminus Lose$.
- Solve emptiness problem of DPWs intersection $X_{i \in Win} A^{i}$
- Intersection of DPWs might involve exponential blowup
- Each parity condition $\alpha = (F_1, \dots, F_n)$ is a Streett condition $((E_1, C_1), \dots, (E_m, C_m))$ with $m = \lceil \frac{n}{2} \rceil$ and $(E_i, C_i) = (F_{2i+1}, \bigcup_{j < i} F_{2j})$, for each $0 \le i \le m$
- Intersection of DSWs $\times_{i \in Win} S_i$ and nonemptiness check can be done in polynomial time

1. $\mathcal{G}_{LTL} \Rightarrow \mathcal{G}_{PAR}$

- 2. For each Win \subseteq N do:
 - 2.1 Compute punishing region $\bigcap_{j \in Lose} Pun_j(\mathcal{G}_{PAR})$ 2.2 Construct DSW $\times_{i \in Win} S_i$ 2.3 If $\mathcal{L}(\bigotimes_{i \in Win} S_i) \neq \emptyset$ then return "YES"
- 3. Return "NO"

- 1. $\mathcal{G}_{\mathsf{LTL}} \Rightarrow \mathcal{G}_{\mathsf{PAR}}$
- 2. For each Win \subseteq N do:
 - 2.1 Compute punishing region $\bigcap_{j \in Lose} Pun_j(\mathcal{G}_{PAR})$ 2.2 Construct DSW $\times_{i \in Win} S_i$ 2.3 If $\mathcal{L}(\bigotimes_{i \in Win} S_i) \neq \emptyset$ then return "YES"
- 3. Return "NO"

- 2. For each Win \subseteq N do:
 - 2.1 Compute punishing region $\bigcap_{j \in \text{Lose}} \text{Pun}_{j}(\mathcal{G}_{\text{PAR}})$ 2.2 Construct DSW $\times_{i \in \text{Win}} S_i$ 2.3 If $\mathcal{L}(\times_{i \in \text{Win}} S_i) \neq \emptyset$ then return "YES"
- 3. Return "NO"

- 2. For each Win \subseteq N do:
 - 2.1 Compute punishing region $\bigcap_{j \in Lose} Pun_j(\mathcal{G}_{PAR})$ 2.2 Construct DSW $\bigotimes_{i \in Win} S_i$ 2.3 If $\mathcal{L}(\bigotimes_{i \in Win} S_i) \neq \emptyset$ then return "YES"
- 3. Return "NO"

- 2. For each Win \subseteq N do:
 - 2.1 Compute punishing region

 ∩_{j∈Lose} Pun_j(G_{PAR})

 2.2 Construct DSW X_{i∈Win} S_i
 2.3 If L(X_{i∈Win} S_i) ≠ Ø then return "YES"
- 3. Return "NO"

- 1. $\mathcal{G}_{\mathsf{LTL}} \Rightarrow \mathcal{G}_{\mathsf{PAR}}$
- 2. For each Win \subseteq N do:
 - 2.1 Compute punishing region $\bigcap_{j \in \text{Lose}} \text{Pun}_{j}(\mathcal{G}_{\text{PAR}})$ 2.2 Construct DSW $\times_{i \in \text{Win}} S_{i}$ 2.3 If $\mathcal{L}(\bigotimes_{i \in \text{Win}} S_{i}) \neq \emptyset$ then return "YES"
- 3. Return "NO"

1. $\mathcal{G}_{\text{LTL}} \Rightarrow \mathcal{G}_{\text{PAR}}$

- 2. For each Win \subseteq N do:
 - 2.1 Compute punishing region $\bigcap_{j \in Lose} Pun_j(\mathcal{G}_{PAR})$ 2.2 Construct DSW $\bigotimes_{i \in Win} S_i$ 2.3 If $\mathcal{L}(\bigotimes_{i \in Win} S_i) \neq \emptyset$ then return "YES"
- 3. Return "NO"

 Step 1 can be done in 2EXPTIME: the number of states is doubly exponential in the size of LTL goals, but priority functions (α_i)_{i∈N} is only singly exponential.

1. $\mathcal{G}_{LTL} \Rightarrow \mathcal{G}_{PAR}$

- 2. For each Win \subseteq N do:
 - 2.1 Compute punishing region $\bigcap_{j \in Lose} Pun_j(\mathcal{G}_{PAR})$ 2.2 Construct DSW $\times_{i \in Win} S_i$ 2.3 If $\mathcal{L}(\bigotimes_{i \in Win} S_i) \neq \emptyset$ then return "YES"
- 3. Return "NO"

- Step 1 can be done in 2EXPTIME: the number of states is doubly exponential in the size of LTL goals, but priority functions (α_i)_{i∈N} is only singly exponential.
- Step 2 at most executed exponential in the number of players

- 2. For each Win \subseteq N do:
 - 2.1 Compute punishing region $\bigcap_{j \in \text{Lose}} \text{Pun}_j(\mathcal{G}_{\text{PAR}})$ 2.2 Construct DSW $\bigotimes_{i \in \text{Win}} S_i$ 2.3 If $\mathcal{L}(\bigotimes_{i \in \text{Win}} S_i) \neq \emptyset$ then return "YES"
- 3. Return "NO"

- Step 1 can be done in 2EXPTIME: the number of states is doubly exponential in the size of LTL goals, but priority functions (α_i)_{i∈N} is only singly exponential.
- Step 2 at most executed exponential in the number of players
- Step 2.1 is polynomial in the number of states and exponential in the number of priorities

- 2. For each Win \subseteq N do:
 - 2.1 Compute punishing region $\bigcap_{j \in Lose} Pun_j(\mathcal{G}_{PAR})$ 2.2 Construct DSW $\times_{i \in Win} S_i$ 2.3 If $\mathcal{L}(\bigotimes_{i \in Win} S_i) \neq \emptyset$ then return "YES"
- 3. Return "NO"

- Step 1 can be done in 2EXPTIME: the number of states is doubly exponential in the size of LTL goals, but priority functions (α_i)_{i∈N} is only singly exponential.
- Step 2 at most executed exponential in the number of players
- Step 2.1 is polynomial in the number of states and exponential in the number of priorities
- Step 2.2 and 2.3 are both polynomial in the number of states

- 2. For each Win \subseteq N do:
 - 2.1 Compute punishing region $\bigcap_{j \in Lose} Pun_j(\mathcal{G}_{PAR})$ 2.2 Construct DSW $\times_{i \in Win} S_i$ 2.3 If $\mathcal{L}(\bigotimes_{i \in Win} S_i) \neq \emptyset$ then return "YES"
- 3. Return "NO"

- Step 1 can be done in 2EXPTIME: the number of states is doubly exponential in the size of LTL goals, but priority functions (α_i)_{i∈N} is only singly exponential.
- Step 2 at most executed exponential in the number of players
- Step 2.1 is polynomial in the number of states and exponential in the number of priorities
- Step 2.2 and 2.3 are both polynomial in the number of states
- Overall we have 2EXPTIME procedure.

• Simple Reactive Modules Language (SRML)⁶ as modelling language

 $^{^{6}\}mathsf{Based}$ on the Reactive Modules language used by PRISM and MOCHA.

- Simple Reactive Modules Language (SRML)⁶ as modelling language
- Supports general-sum multi-player LTL games, bisimulation-invariant strategies, and perfect recall.

 $^{^6\}mathsf{Based}$ on the Reactive Modules language used by PRISM and MOCHA.

- Simple Reactive Modules Language (SRML)⁶ as modelling language
- Supports general-sum multi-player LTL games, bisimulation-invariant strategies, and perfect recall.
- Supports Non-emptiness, E-Nash, and A-Nash

 $^{^6\}mathsf{Based}$ on the Reactive Modules language used by PRISM and MOCHA.

- Simple Reactive Modules Language (SRML)⁶ as modelling language
- Supports general-sum multi-player LTL games, bisimulation-invariant strategies, and perfect recall.
- Supports Non-emptiness, E-Nash, and A-Nash
- Synthesise strategies

 $^{^6\}mathsf{Based}$ on the Reactive Modules language used by PRISM and MOCHA.

- Simple Reactive Modules Language (SRML)⁶ as modelling language
- Supports general-sum multi-player LTL games, bisimulation-invariant strategies, and perfect recall.
- Supports Non-emptiness, E-Nash, and A-Nash
- Synthesise strategies
- **Open-source:** https://github.com/eve-mas/eve-parity
- EVE Online: http://eve.cs.ox.ac.uk/

⁶Based on the Reactive Modules language used by PRISM and MOCHA.

EVE vs Other Similar Tools

	EVE	PRALINE ⁷	MCMAS ⁸
Goal language	LTL	Büchi	LTL
Bisim. invariant strategies	Yes	No	No
Memoryful	Yes	Yes	No

1

 ⁷R. Brenguier. "PRALINE: A Tool for Computing Nash Equilibria in Concurrent Games". In: CAV. 2013.
 ⁸Petr Čermák et al. "MCMAS-SLK: A Model Checker for the Verification of Strategy Logic Specifications". In: CAV. 2014.

Non-Emptiness Experiment Result⁹

Figure 1: Running time for NON-EMPTINESS Gossip Protocol.

Figure 2: Running time for NON-EMPTINESS Replica Control Protocol.

Time-out was set to 7200 seconds (2 hours).

⁹Y-axis is in logarithmic scale.

E-Nash Experiment Result¹⁰

Figure 3: Running time for E-NASH Gossip Protocol.

Time-out was set to 7200 seconds (2 hours).

Figure 4: Running time for E-NASH Replica Control Protocol.

¹⁰Y-axis is in logarithmic scale.

A-Nash Experiment Result¹¹

Figure 5: Running time for A-NASH Gossip Protocol.

Time-out was set to 7200 seconds (2 hours).

Figure 6: Running time for A-NASH Replica Control Protocol.

¹¹Y-axis is in logarithmic scale.

Conclusions

- Two main contributions:
 - Novel and optimal decision procedure for rational verification and synthesis
 - Complete and efficient implementation
- Future directions:
 - Cooperative setting: implementing "core" ¹² as the solution concept
 - Probabilistic systems¹³
 - Decidable classes of imperfect information

 $^{^{12}}$ Julian Gutierrez, Sarit Kraus, and Michael Wooldridge. "Cooperative Concurrent Games". In: AAMAS. 2019. 13 Julian Gutierrez et al. "Rational Verification for Probabilistic Systems". In: KR. to appear. 2021.