Automated Temporal Equilibrium Analysis: Verification and Synthesis of Multi-Player Games

Julian Gutierrez ${ }^{1}$ Muhammad Najib ${ }^{2}$ Giuseppe Perelli ${ }^{3}$ Michael Wooldridge ${ }^{4}$
30th International Joint Conference on Artificial Intelligence (IJCAI-21)
${ }^{1}$ Faculty of Information Technology, Monash University
${ }^{2}$ Department of Computer Science, University of Kaiserslautern
${ }^{3}$ Department of Computer, Automation, and Business Engineering, La Sapienza University of Rome
${ }^{4}$ Department of Computer Science, University of Oxford

Al Systems in Our Lives

- More AI systems integrated in our lives

Al Systems in Our Lives

- More AI systems integrated in our lives
- E.g. Siri, Alexa, trading softwares, autonomous cars...

Al Systems in Our Lives

- More AI systems integrated in our lives
- E.g. Siri, Alexa, trading softwares, autonomous cars...
- Multiple interacting semi-autonomous software components (agents): multi-agent systems (MAS).

Multi-Agent Systems

- System composed of multiple entitites (players/agents): autonomous cars.

Multi-Agent Systems

- System composed of multiple entitites (players/agents): autonomous cars.
- Each agent may have different (not necessarily antagonistic) goal: each car has unique destination.

Multi-Agent Systems Correctness

How do we define correctness in MAS?

Multi-Agent Systems Correctness

How do we define correctness in MAS?

- We can use the "classical" approach in formal verification, however...

Multi-Agent Systems Correctness

How do we define correctness in MAS?

- We can use the "classical" approach in formal verification, however...
- Agents are rational

Multi-Agent Systems Correctness

How do we define correctness in MAS?

- We can use the "classical" approach in formal verification, however...
- Agents are rational
- Agents pursue their goals/preferences strategically

Multi-Agent Systems Correctness

How do we define correctness in MAS?

- We can use the "classical" approach in formal verification, however...
- Agents are rational
- Agents pursue their goals/preferences strategically
- Some possible behaviour may not arise

Not all behaviours are equal, but some are more unequal than others

- Autonomous cars crossing an intersection

Not all behaviours are equal, but some are more unequal than others

- Autonomous cars crossing an intersection
- Most of them (are expected to) cross without crashing with each other

Not all behaviours are equal, but some are more unequal than others

- Autonomous cars crossing an intersection
- Most of them (are expected to) cross without crashing with each other
- Cross and crash is also a possible behaviour of the system

Not all behaviours are equal, but some are more unequal than others

- Autonomous cars crossing an intersection
- Most of them (are expected to) cross without crashing with each other
- Cross and crash is also a possible behaviour of the system
- But cross and crash is not a rational behaviour

Not all behaviours are equal, but some are more unequal than others

- Autonomous cars crossing an intersection
- Most of them (are expected to) cross without crashing with each other
- Cross and crash is also a possible behaviour of the system
- But cross and crash is not a rational behaviour
- They would rather do something else (not crash), thus it's not a stable behaviour

Multi-Agent Systems Correctness

How do we define correctness in MAS?

Multi-Agent Systems Correctness

How do we define correctness in MAS?

- Is the system correct with respect to the set of stable behaviours?

Multi-Agent Systems Correctness

How do we define correctness in MAS?

- Is the system correct with respect to the set of stable behaviours?
- Stable behaviours \Rightarrow Nash equilibria via game theory

Multi-Agent Systems Correctness

How do we define correctness in MAS?

- Is the system correct with respect to the set of stable behaviours?
- Stable behaviours \Rightarrow Nash equilibria via game theory
- Turn MAS into multi-player game

From Verification to Rational Verification

From Verification to Rational Verification

Rational Verification

E-Nash

Given: Game \mathcal{G}, temporal property φ.
Question: Is there any Nash Equilibrium $\vec{\sigma}$ in \mathcal{G} such that $\pi(\vec{\sigma}) \models \varphi$?

Rational Verification

E-Nash

Given: Game \mathcal{G}, temporal property φ.
Question: Is there any Nash Equilibrium $\vec{\sigma}$ in \mathcal{G} such that $\pi(\vec{\sigma}) \models \varphi$?

A-Nash

Given: Game \mathcal{G}, temporal property φ
Question: Does $\pi(\vec{\sigma}) \models \varphi$ hold for every Nash Equilibrium $\vec{\sigma}$ in \mathcal{G} ?

Rational Verification

Theorem (Complexity)

For the case of both the specification φ and the agents goals γ_{i} expressed as LTL formulas, rational verification is 2 EXPTIME-Complete. ${ }^{1}$

[^0]
Rational Verification

E-Nash

Given: Game \mathcal{G}, temporal property φ.
Question: Is there any Nash Equilibrium $\vec{\sigma}$ in \mathcal{G} such that $\pi(\vec{\sigma}) \models \varphi$?

A-Nash

Given: Game \mathcal{G}, temporal property φ.
Question: Does $\pi(\vec{\sigma}) \models \varphi$ hold for every Nash Equilibrium $\vec{\sigma}$ in \mathcal{G} ?

Both decision problems above can be reduced to the following

Non-Emptiness

Given: Game \mathcal{G}.
Question: Is there any Nash Equilibrium in \mathcal{G} ?

Games

A multi-player LTL game is a tuple $\mathcal{G}_{\mathrm{LTL}}=\left(\mathcal{M}, \lambda,\left(\gamma_{i}\right)_{i \in \mathrm{~N}}\right)$

- $\mathcal{M}=\left(\mathrm{N},\left(\mathrm{Ac}_{i}\right)_{i \in \mathrm{~N}}, \mathrm{St}, s_{0}, \mathrm{tr}\right)$ is a concurrent game structure $(\mathrm{CGS})^{2}$,
- γ_{i} is the LTL goal for player i.
- $\lambda: S t \rightarrow 2^{\text {AP }}$ is a labelling function

LTL

$$
\varphi::=\top|p| \neg \varphi|\varphi \vee \varphi| \mathrm{X} \varphi \mid \varphi \cup \varphi
$$

LTL formulae interpreted w.r.t. (π, t, λ), where π is a path over some multi-player game, $t \in \mathbb{N}$ is a temporal index into π.

[^1]
Games

A (2-player) parity game is a tuple $H=\left(V_{0}, V_{1}, E, \alpha\right)$

- zero-sum turn-based
- $V=V_{0} \cup V_{1}$
- $E \subseteq V \times V$
- $\alpha: V \rightarrow \mathbb{N}$ is a labelling priority function

Player 0 wins if the smallest priority that occurs infinitely often in the infinite play is even. Otherwise, player 1 wins. Can be solved in NP \cap coNPa ${ }^{a}$.

[^2]
Games

A multi-player parity game is a tuple $\mathcal{G}_{\text {PAR }}=\left(\mathcal{M},\left(\alpha_{i}\right)_{i \in N}\right)$

- $\mathcal{M}=\left(\mathrm{N},\left(\mathrm{Ac}_{i}\right)_{i \in \mathrm{~N}}, \mathrm{St}, s_{0}, \mathrm{tr}\right)$ is a concurrent game structure $(\mathrm{CGS})^{3}$,
- $\alpha_{i}: S t \rightarrow \mathbb{N}$ is the goal of player i, given as a priority function over St .

[^3]
Strategies and Plays

Strategy

Finite state machine $\sigma_{i}=\left\langle S_{i}, s_{i}^{0}, \delta_{i}, \tau_{i}\right\rangle$

- S_{i}, internal state (s_{i}^{0} initial state);
- $\delta_{i}: S_{i} \times \mathrm{Ac} \rightarrow S_{i}$ internal transition function;
- $\tau_{i}: S_{i} \rightarrow \mathrm{Ac}_{i}$ action function.

Strategies and Plays

Strategy

Finite state machine $\sigma_{i}=\left\langle S_{i}, s_{i}^{0}, \delta_{i}, \tau_{i}\right\rangle$

- S_{i}, internal state (s_{i}^{0} initial state);
- $\delta_{i}: S_{i} \times \mathrm{Ac} \rightarrow S_{i}$ internal transition function;
- $\tau_{i}: S_{i} \rightarrow \mathrm{Ac}_{i}$ action function.

A strategy is a recipe for the agent prescribing the action to take at every time-step of the game execution. A strategy profile $\vec{\sigma}=\left\langle\sigma_{1}, \ldots, \sigma_{N}\right\rangle$ assigns a strategy to each agent in the arena.

Strategies and Plays

Strategy

Finite state machine $\sigma_{i}=\left\langle S_{i}, s_{i}^{0}, \delta_{i}, \tau_{i}\right\rangle$

- S_{i}, internal state (s_{i}^{0} initial state);
- $\delta_{i}: S_{i} \times \mathrm{Ac} \rightarrow S_{i}$ internal transition function;
- $\tau_{i}: S_{i} \rightarrow \mathrm{Ac}_{i}$ action function.

A strategy is a recipe for the agent prescribing the action to take at every time-step of the game execution. A strategy profile $\vec{\sigma}=\left\langle\sigma_{1}, \ldots, \sigma_{N}\right\rangle$ assigns a strategy to each agent in the arena.

Play

Given a strategy assigned to every agent in A, denoted $\vec{\sigma}$, there is a unique possible execution $\pi(\vec{\sigma})$ called play.
Note that plays can only be ultimately periodic.

Nash Equilibria

Preference Relation

Let w_{i} be γ_{i} if \mathcal{G} is an LTL game, and be α_{i} if \mathcal{G} is a Parity game. For two strategy profiles $\vec{\sigma}$ and $\vec{\sigma}^{\prime}$ in \mathcal{G}, we have

$$
\pi(\vec{\sigma}) \succeq_{i} \pi\left(\vec{\sigma}^{\prime}\right) \text { if and only if } \pi\left(\vec{\sigma}^{\prime}\right) \models w_{i} \text { implies } \pi(\vec{\sigma}) \models w_{i}
$$

Nash Equilibria

Preference Relation

Let w_{i} be γ_{i} if \mathcal{G} is an LTL game, and be α_{i} if \mathcal{G} is a Parity game. For two strategy profiles $\vec{\sigma}$ and $\vec{\sigma}^{\prime}$ in \mathcal{G}, we have

$$
\pi(\vec{\sigma}) \succeq_{i} \pi\left(\vec{\sigma}^{\prime}\right) \text { if and only if } \pi\left(\vec{\sigma}^{\prime}\right) \models w_{i} \text { implies } \pi(\vec{\sigma}) \models w_{i} \text {. }
$$

Nash Equilibrium

a strategy profile $\vec{\sigma}$ is a Nash equilibrium of \mathcal{G} if, for every player i and strategy $\sigma_{i}^{\prime} \in \Sigma_{i}$, we have

$$
\pi(\vec{\sigma}) \succeq_{i} \pi\left(\left(\vec{\sigma}_{-i}, \sigma_{i}^{\prime}\right)\right)
$$

where $\left(\vec{\sigma}_{-i}, \sigma_{i}^{\prime}\right)$ denotes $\left(\sigma_{1}, \ldots, \sigma_{i-1}, \sigma_{i}^{\prime}, \sigma_{i+1}, \ldots, \sigma_{n}\right)$, the strategy profile where the strategy of player i in $\vec{\sigma}$ is replaced by σ_{i}^{\prime}.
i.e., no player can benefit by changing its strategy unilaterally.

NE Characterisation

Theorem (NE characterisation)

Let $N E(\mathcal{G})$ be the set of Nash equilibria in \mathcal{G}. A strategy profile $\vec{\sigma} \in N E(\mathcal{G})$
if and only if
the path $\pi=\pi(\vec{\sigma})$ is such that, for every $k \in \mathbb{N}$, the pair $\left(s_{k}, \vec{a}^{*}\right)$ of the k-th position of π is punishing secure ${ }^{4}$ for every $j \in \operatorname{Lose}(\pi) .{ }^{5}$ Where $\vec{a}^{k}=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ is an action profile at k.

Along π, no player j can unilaterally get its goal γ_{j} achieved.

[^4]
NE Characterisation via Local Reasoning

- Memory is needed to satisfy LTL goal

NE Characterisation via Local Reasoning

- Memory is needed to satisfy LTL goal
- Memory is NOT necessary for (2-player) parity games (memoryless/positional determinacy)

NE Characterisation via Local Reasoning

- Memory is needed to satisfy LTL goal
- Memory is NOT necessary for (2-player) parity games (memoryless/positional determinacy)
- Reason locally by converting each γ_{i} into deterministic parity word automaton (DPW) $\mathcal{A}_{i}=\left\langle 2^{\mathrm{AP}}, Q, q^{0}, \rho, \alpha\right\rangle$.

NE Characterisation via Local Reasoning

- Memory is needed to satisfy LTL goal
- Memory is NOT necessary for (2-player) parity games (memoryless/positional determinacy)
- Reason locally by converting each γ_{i} into deterministic parity word automaton (DPW) $\mathcal{A}_{i}=\left\langle 2^{\mathrm{AP}}, Q, q^{0}, \rho, \alpha\right\rangle$.
- Then build $\mathcal{G}_{\text {LTL }}=\left(\mathcal{M}, \lambda,\left(\gamma_{i}\right)_{i \in \mathrm{~N}}\right)$ into $\mathcal{G}_{\text {PAR }}=\left(\mathcal{M}^{\prime},\left(\alpha_{i}^{\prime}\right)_{i \in \mathrm{~N}}\right)$, where $\mathcal{M}^{\prime}=\left(\mathrm{N},\left(\mathrm{Ac}_{i}\right)_{i \in \mathrm{~N}}, \mathrm{St}^{\prime}, s_{0}^{\prime}, \mathrm{tr}^{\prime}\right)$ and $\left(\alpha_{i}^{\prime}\right)_{i \in \mathrm{~N}}$:
- $\mathrm{St}^{\prime}=\mathrm{St} \times \mathrm{X}_{i \in \mathrm{~N}} Q_{i}$ and $s_{0}^{\prime}=\left(s_{0}, q_{1}^{0}, \ldots, q_{n}^{0}\right)$;
- for each state $\left(s, q_{1}, \ldots, q_{n}\right) \in \mathrm{St}^{\prime}$ and action profile \vec{a},

$$
\operatorname{tr}^{\prime}\left(\left(s, q_{1}, \ldots, q_{n}\right), \vec{a}\right)=\left(\operatorname{tr}(s, \vec{a}), \rho_{1}\left(q_{1}, \lambda(s)\right), \ldots, \rho_{n}\left(q_{n}, \lambda(s)\right) ;\right.
$$

- $\alpha_{i}^{\prime}\left(s, q_{1}, \ldots q_{n}\right)=\alpha_{i}\left(q_{i}\right)$.

Invariances

Lemma (Goal Invariance)

Let $\mathcal{G}_{\text {LTL }}$ be an LTL game and $\mathcal{G}_{\text {PAR }}$ its associated Parity game. Then, for every strategy profile $\vec{\sigma}$ and player i, it is the case that $\pi(\vec{\sigma}) \models \gamma_{i}$ in $\mathcal{G}_{\text {LTL }}$ if and only if $\pi(\vec{\sigma}) \models \alpha_{i}$ in $\mathcal{G}_{\text {PAR }}$.

Invariances

Lemma (Goal Invariance)

Let $\mathcal{G}_{\text {LTL }}$ be an LTL game and $\mathcal{G}_{\text {PAR }}$ its associated Parity game. Then, for every strategy profile $\vec{\sigma}$ and player i, it is the case that $\pi(\vec{\sigma}) \models \gamma_{i}$ in $\mathcal{G}_{\text {LTL }}$ if and only if $\pi(\vec{\sigma}) \models \alpha_{i}$ in $\mathcal{G}_{\text {PAR }}$.

Theorem (NE Invariance)

Let $\mathcal{G}_{\text {LTL }}$ be an LTL game and $\mathcal{G}_{\text {PAR }}$ its associated Parity game. Then, $\operatorname{NE}\left(\mathcal{G}_{\text {LTL }}\right)=\operatorname{NE}\left(\mathcal{G}_{\text {PAR }}\right)$.

Visualising NE Characterisation

$\bigcap_{j \in \text { Lose }} \operatorname{Pun}_{j}\left(\mathcal{G}_{\text {PAR }}\right)$ is the punishing region for Lose

Computing Punishing Region

For a $\mathcal{G}_{\text {PAR }}$ and a (to-be-punished) player j. We turn $\mathcal{G}_{\text {PAR }}$ into a 2-player zero-sum parity game $H_{j}=\left(V_{0}, V_{1}, E, \alpha\right)$ between player j (Player 1) and (coalition) player N_{-j} (Player 0). Circular states are in V_{0}.

punishing region for Lose $=\bigcap_{j \in \text { Lose }} \operatorname{Pun}_{j}\left(\mathcal{G}_{\text {PAR }}\right)$

Computing Punishing Region

For a $\mathcal{G}_{\text {PAR }}$ and a (to-be-punished) player j. We turn $\mathcal{G}_{\text {PAR }}$ into a 2 -player zero-sum parity game $H_{j}=\left(V_{0}, V_{1}, E, \alpha\right)$ between player j (Player 1) and (coalition) player N_{-j} (Player 0). Circular states are in V_{0}.

punishing region for Lose $=\bigcap_{j \in \text { Lose }} \operatorname{Pun}_{j}\left(\mathcal{G}_{\text {PAR }}\right)$

Corollary

Computing Puni ${ }_{\left(\mathcal{G}_{\text {PAR }}\right)}$ can be done in polynomial time with respect to the size of the underlying graph of the game $\mathcal{G}_{\text {PAR }}$ and exponential in the size of the priority function α_{i}, that is, to the size of the range of α_{i}. Moreover, there is a memoryless strategy $\vec{\sigma}_{i}$ that is a punishment against player i in every state $s \in \operatorname{Pun}_{i}\left(\mathcal{G}_{\text {PAR }}\right)$.

Finding NE Run

How do we compute $\pi(\vec{\sigma})$? Is there such run $\pi(\vec{\sigma})$ inside the punishing region?

Finding NE Run

- $\pi(\vec{\sigma})$ must be accepting for each $\alpha_{i}, i \in$ Win $=\mathrm{N} \backslash$ Lose.

Finding NE Run

- $\pi(\vec{\sigma})$ must be accepting for each $\alpha_{i}, i \in$ Win $=\mathrm{N} \backslash$ Lose.
- Solve emptiness problem of DPWs intersection $X_{i \in W i n} \mathcal{A}^{i}$

Finding NE Run

- $\pi(\vec{\sigma})$ must be accepting for each $\alpha_{i}, i \in$ Win $=\mathrm{N} \backslash$ Lose.
- Solve emptiness problem of DPWs intersection $X_{i \in W i n} \mathcal{A}^{i}$
- Intersection of DPWs might involve exponential blowup

Finding NE Run

- $\pi(\vec{\sigma})$ must be accepting for each $\alpha_{i}, i \in \mathrm{Win}=\mathrm{N} \backslash$ Lose.
- Solve emptiness problem of DPWs intersection $\times_{i \in W_{\text {in }}} \mathcal{A}^{i}$
- Intersection of DPWs might involve exponential blowup
- Each parity condition $\alpha=\left(F_{1}, \ldots, F_{n}\right)$ is a Streett condition $\left(\left(E_{1}, C_{1}\right), \ldots,\left(E_{m}, C_{m}\right)\right)$ with $m=\left\lceil\frac{n}{2}\right\rceil$ and $\left(E_{i}, C_{i}\right)=\left(F_{2 i+1}, \bigcup_{j \leq i} F_{2 j}\right)$, for each $0 \leq i \leq m$

Finding NE Run

- $\pi(\vec{\sigma})$ must be accepting for each $\alpha_{i}, i \in \mathrm{Win}=\mathrm{N} \backslash$ Lose.
- Solve emptiness problem of DPWs intersection $\times_{i \in W_{\text {in }}} \mathcal{A}^{i}$
- Intersection of DPWs might involve exponential blowup
- Each parity condition $\alpha=\left(F_{1}, \ldots, F_{n}\right)$ is a Streett condition $\left(\left(E_{1}, C_{1}\right), \ldots,\left(E_{m}, C_{m}\right)\right)$ with $m=\left\lceil\frac{n}{2}\right\rceil$ and $\left(E_{i}, C_{i}\right)=\left(F_{2 i+1}, \bigcup_{j \leq i} F_{2 j}\right)$, for each $0 \leq i \leq m$
- Intersection of DSWs $\times_{i \in W_{\text {in }}} \mathcal{S}_{i}$ and nonemptiness check can be done in polynomial time

The Procedure

1. $\mathcal{G}_{\text {LTL }} \Rightarrow \mathcal{G}_{\text {PAR }}$
2. For each $\mathrm{Win} \subseteq \mathrm{N}$ do:
2.1 Compute punishing region $\bigcap_{j \in \text { Lose }} \operatorname{Pun}_{j}\left(\mathcal{G}_{\text {PAR }}\right)$
2.2 Construct DSW $X_{i \in \text { Win }^{\prime}} \mathcal{S}_{i}$
2.3 If $\mathcal{L}\left(X_{i \in \text { Win }} \mathcal{S}_{i}\right) \neq \varnothing$ then return "YES"
3. Return "NO"

The Procedure

1. $\mathcal{G}_{\text {LTL }} \Rightarrow \mathcal{G}_{\text {PAR }}$
2. For each Win $\subseteq \mathrm{N}$ do:
2.1 Compute punishing region $\bigcap_{j \in \text { Lose }} \operatorname{Pun}_{j}\left(\mathcal{G}_{\text {PAR }}\right)$
2.2 Construct DSW $X_{i \in \text { Win }^{\prime}} \mathcal{S}_{i}$
2.3 If $\mathcal{L}\left(X_{i \in W_{\text {in }}} \mathcal{S}_{i}\right) \neq \varnothing$ then return "YES"
3. Return "NO"

The Procedure

1. $\mathcal{G}_{\text {LTL }} \Rightarrow \mathcal{G}_{\text {PAR }}$
2. For each $\mathrm{Win} \subseteq \mathrm{N}$ do:
2.1 Compute punishing region $\bigcap_{j \in \text { Lose }}$ Pun $_{j}\left(\mathcal{G}_{\text {PAR }}\right)$
2.2 Construct DSW $\times_{i \in \text { Win }} \mathcal{S}_{i}$
2.3 If $\mathcal{L}\left(X_{i \in W_{i n}} \mathcal{S}_{i}\right) \neq \varnothing$ then return "YES"
3. Return "NO"

The Procedure

1. $\mathcal{G}_{\text {LTL }} \Rightarrow \mathcal{G}_{\text {PAR }}$
2. For each $\mathrm{Win} \subseteq \mathrm{N}$ do:
2.1 Compute punishing region $\bigcap_{j \in \text { Lose }} \operatorname{Pun}_{j}\left(\mathcal{G}_{\text {PAR }}\right)$
2.2 Construct DSW $X_{i \in \text { Win }} \mathcal{S}_{i}$
2.3 If $\mathcal{L}\left(X_{i \in W_{i n}} \mathcal{S}_{i}\right) \neq \varnothing$ then return "YES"
3. Return "NO"

The Procedure

1. $\mathcal{G}_{\text {LTL }} \Rightarrow \mathcal{G}_{\text {PAR }}$
2. For each $\mathrm{Win} \subseteq \mathrm{N}$ do:
2.1 Compute punishing region $\bigcap_{j \in \text { Lose }} \operatorname{Pun}_{j}\left(\mathcal{G}_{\text {PAR }}\right)$
2.2 Construct DSW $\times_{i \in \text { Win }} \mathcal{S}_{i}$
2.3 If $\mathcal{L}\left(X_{i \in W_{\text {in }}} \mathcal{S}_{i}\right) \neq \varnothing$ then return "YES"
3. Return "NO"

The Procedure

1. $\mathcal{G}_{\text {LTL }} \Rightarrow \mathcal{G}_{\text {PAR }}$
2. For each $\mathrm{Win} \subseteq \mathrm{N}$ do:
2.1 Compute punishing region $\bigcap_{j \in \text { Lose }}$ Pun $_{j}\left(\mathcal{G}_{\text {PAR }}\right)$
2.2 Construct DSW $\times_{i \in \text { Win }} \mathcal{S}_{i}$
2.3 If $\mathcal{L}\left(X_{i \in W_{i n}} \mathcal{S}_{i}\right) \neq \varnothing$ then return "YES"
3. Return "NO"

The Procedure

1. $\mathcal{G}_{\text {LTL }} \Rightarrow \mathcal{G}_{\text {PAR }}$

2. For each $\mathrm{Win} \subseteq \mathrm{N}$ do:
2.1 Compute punishing region $\bigcap_{j \in \text { Lose }} \operatorname{Pun}_{j}\left(\mathcal{G}_{\text {PAR }}\right)$
2.2 Construct DSW $\times_{i \in \text { Win }} \mathcal{S}_{i}$
2.3 If $\mathcal{L}\left(X_{i \in W_{\text {W }}} \mathcal{S}_{i}\right) \neq \varnothing$ then return "YES"
3. Return "NO"

- Step 1 can be done in 2EXPTIME: the number of states is doubly exponential in the size of LTL goals, but priority functions $\left(\alpha_{i}\right)_{i \in \mathrm{~N}}$ is only singly exponential.

The Procedure

- Step 1 can be done in 2EXPTIME: the number of states is doubly exponential in the size of LTL goals, but priority functions $\left(\alpha_{i}\right)_{i \in \mathrm{~N}}$ is only singly exponential.
- Step 2 at most executed exponential in the number of players

The Procedure

1. $\mathcal{G}_{\text {LTL }} \Rightarrow \mathcal{G}_{\text {PAR }}$

2. For each $\mathrm{Win} \subseteq \mathrm{N}$ do:
2.1 Compute punishing region $\bigcap_{j \in \text { Lose }} \operatorname{Pun}_{j}\left(\mathcal{G}_{\text {PAR }}\right)$
2.2 Construct DSW $\times_{i \in \text { Win }} \mathcal{S}_{i}$
2.3 If $\mathcal{L}\left(X_{i \in W_{\text {in }}} \mathcal{S}_{i}\right) \neq \varnothing$ then return "YES"
3. Return "NO"

- Step 1 can be done in 2EXPTIME: the number of states is doubly exponential in the size of LTL goals, but priority functions $\left(\alpha_{i}\right)_{i \in \mathrm{~N}}$ is only singly exponential.
- Step 2 at most executed exponential in the number of players
- Step 2.1 is polynomial in the number of states and exponential in the number of priorities

The Procedure

- Step 1 can be done in 2EXPTIME: the number of states is doubly exponential in the size of LTL goals, but priority functions $\left(\alpha_{i}\right)_{i \in \mathrm{~N}}$ is only singly exponential.
- Step 2 at most executed exponential in the number of players
- Step 2.1 is polynomial in the number of states and exponential in the number of priorities
- Step 2.2 and 2.3 are both polynomial in the number of states

The Procedure

- Step 1 can be done in 2EXPTIME: the number of states is doubly exponential in the size of LTL goals, but priority functions $\left(\alpha_{i}\right)_{i \in \mathrm{~N}}$ is only singly exponential.
- Step 2 at most executed exponential in the number of players
- Step 2.1 is polynomial in the number of states and exponential in the number of priorities
- Step 2.2 and 2.3 are both polynomial in the number of states
- Overall we have 2EXPTIME procedure.

EVE (Equilibrium Verification Environment)

- Simple Reactive Modules Language (SRML) ${ }^{6}$ as modelling language

[^5]
EVE (Equilibrium Verification Environment)

- Simple Reactive Modules Language (SRML) ${ }^{6}$ as modelling language
- Supports general-sum multi-player LTL games, bisimulation-invariant strategies, and perfect recall.

[^6]
EVE (Equilibrium Verification Environment)

- Simple Reactive Modules Language (SRML) ${ }^{6}$ as modelling language
- Supports general-sum multi-player LTL games, bisimulation-invariant strategies, and perfect recall.
- Supports Non-emptiness, E-Nash, and A-Nash

[^7]
EVE (Equilibrium Verification Environment)

- Simple Reactive Modules Language (SRML) ${ }^{6}$ as modelling language
- Supports general-sum multi-player LTL games, bisimulation-invariant strategies, and perfect recall.
- Supports Non-emptiness, E-Nash, and A-Nash
- Synthesise strategies

[^8]
EVE (Equilibrium Verification Environment)

- Simple Reactive Modules Language (SRML) ${ }^{6}$ as modelling language
- Supports general-sum multi-player LTL games, bisimulation-invariant strategies, and perfect recall.
- Supports Non-emptiness, E-Nash, and A-Nash
- Synthesise strategies
- Open-source: https://github.com/eve-mas/eve-parity
- EVE Online: http://eve.cs.ox.ac.uk/

[^9]
EVE vs Other Similar Tools

	EVE	PRALINE 7	MCMAS 8
Goal language	LTL	Büchi	LTL
Bisim. invariant strategies	Yes	No	No
Memoryful	Yes	Yes	No

[^10]
Non-Emptiness Experiment Result ${ }^{9}$

Figure 1: Running time for Non-Emptiness Gossip Protocol.

Figure 2: Running time for Non-Emptiness Replica Control Protocol.

Time-out was set to 7200 seconds (2 hours).

[^11]
E-Nash Experiment Result ${ }^{10}$

Figure 3: Running time for E-NASH Gossip Protocol.

Time-out was set to 7200 seconds (2 hours).

Figure 4: Running time for E-NASH Replica Control Protocol.

[^12]
A-Nash Experiment Result ${ }^{11}$

Figure 5: Running time for A-NASH Gossip Protocol.

Time-out was set to 7200 seconds (2 hours).

Figure 6: Running time for A-NASh Replica Control Protocol.

[^13]
Conclusions

- Two main contributions:
- Novel and optimal decision procedure for rational verification and synthesis
- Complete and efficient implementation
- Future directions:
- Cooperative setting: implementing "core" 12 as the solution concept
- Probabilistic systems ${ }^{13}$
- Decidable classes of imperfect information

[^14]
[^0]: ${ }^{1}$ M. Wooldridge et al. "Rational Verification: From Model Checking to Equilibrium Checking". In: AAAI. 2016,
 pp. 4184-4191; Julian Gutierrez, Paul Harrenstein, and Michael J. Wooldridge. "From model checking to equilibrium checking: Reactive modules for rational verification". In: Artificial Intelligence 248 (2017), pp. 123-157.

[^1]: ${ }^{2}$ As usual: N agents; Ac_{i} actions of player i; St states; s_{0} initial state; tr transition function.

[^2]: ${ }^{a}$ Marcin Jurdziński. "Deciding the winner in parity games is in UP \cap co-UP". In: Information Processing Letters (1998).

[^3]: ${ }^{3}$ As usual: N agents; Ac_{i} actions of player i; St states; s_{0} initial state; tr transition function.

[^4]: ${ }^{4}$ Punishing secure: agent j does not have a strategy σ_{j}^{\prime} that wins against $\vec{\sigma}_{-j}$, i.e. $\pi\left(\vec{\sigma}_{-j}, \sigma_{j}^{\prime}\right) \models \gamma_{j}$.
 ${ }^{5}$ Here Lose $(\pi)=\left\{j \in \mathrm{~N}: \pi \mid \vDash \gamma_{j}\right\}$ are the agents that are not satisfied over π.

[^5]: ${ }^{6}$ Based on the Reactive Modules language used by PRISM and MOCHA.

[^6]: ${ }^{6}$ Based on the Reactive Modules language used by PRISM and MOCHA.

[^7]: ${ }^{6}$ Based on the Reactive Modules language used by PRISM and MOCHA.

[^8]: ${ }^{6}$ Based on the Reactive Modules language used by PRISM and MOCHA.

[^9]: ${ }^{6}$ Based on the Reactive Modules language used by PRISM and MOCHA.

[^10]: ${ }^{7}$ R. Brenguier. "PRALINE: A Tool for Computing Nash Equilibria in Concurrent Games". In: CAV. 2013.
 ${ }^{8}$ Petr Čermák et al. "MCMAS-SLK: A Model Checker for the Verification of Strategy Logic Specifications". In: CAV. 2014.

[^11]: ${ }^{9} \mathrm{Y}$-axis is in logarithmic scale.

[^12]: ${ }^{10} \mathrm{Y}$-axis is in logarithmic scale.

[^13]: ${ }^{11} \mathrm{Y}$-axis is in logarithmic scale.

[^14]: ${ }^{12}$ Julian Gutierrez, Sarit Kraus, and Michael Wooldridge. "Cooperative Concurrent Games". In: AAMAS. 2019.
 ${ }^{13}$ Julian Gutierrez et al. "Rational Verification for Probabilistic Systems". In: KR. to appear. 2021.

