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AI Systems in Our Lives

• More AI systems integrated in our lives

• E.g. Siri, Alexa, trading softwares,

autonomous cars...

• Multiple interacting semi-autonomous

software components (agents):

multi-agent systems (MAS).
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Multi-Agent Systems

• System composed of multiple entitites

(players/agents): autonomous cars.

• Each agent may have different (not

necessarily antagonistic) goal: each car

has unique destination.
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Multi-Agent Systems Correctness

How do we define correctness in MAS?

• We can use the “classical” approach in formal verification, however...

• Agents are rational

• Agents pursue their goals/preferences strategically

• Some possible behaviour may not arise
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Not all behaviours are equal, but some are more unequal than others

• Autonomous cars crossing an intersection

• Most of them (are expected to) cross

without crashing with each other

• Cross and crash is also a possible

behaviour of the system

• But cross and crash is not a rational

behaviour

• They would rather do something else (not

crash), thus it’s not a stable behaviour
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Multi-Agent Systems Correctness

How do we define correctness in MAS?

• Is the system correct with respect to the set of stable behaviours?

• Stable behaviours ⇒ Nash equilibria via game theory

• Turn MAS into multi-player game
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From Verification to Rational Verification
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Rational Verification

E-Nash

Given: Game G, temporal property ϕ.

Question: Is there any Nash Equilibrium ~σ in G such that π(~σ) |= ϕ?

A-Nash

Given: Game G, temporal property ϕ.

Question: Does π(~σ) |= ϕ hold for every Nash Equilibrium ~σ in G?
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Rational Verification

Theorem (Complexity)

For the case of both the specification ϕ and the agents goals γi expressed as LTL formulas,

rational verification is 2EXPTIME-Complete.1

1M. Wooldridge et al. “Rational Verification: From Model Checking to Equilibrium Checking”. In: AAAI. 2016,

pp. 4184–4191; Julian Gutierrez, Paul Harrenstein, and Michael J. Wooldridge. “From model checking to equilibrium checking:

Reactive modules for rational verification”. In: Artificial Intelligence 248 (2017), pp. 123–157.
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Rational Verification

E-Nash

Given: Game G, temporal property ϕ.

Question: Is there any Nash Equilibrium ~σ in G such that π(~σ) |= ϕ?

A-Nash

Given: Game G, temporal property ϕ.

Question: Does π(~σ) |= ϕ hold for every Nash Equilibrium ~σ in G?

Both decision problems above can be reduced to the following

Non-Emptiness

Given: Game G.

Question: Is there any Nash Equilibrium in G?
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Games

A multi-player LTL game is a tuple GLTL = (M, λ, (γi )i∈N)

• M = (N, (Aci )i∈N,St, s0, tr) is a concurrent game structure (CGS) 2,

• γi is the LTL goal for player i .

• λ : St→ 2AP is a labelling function

LTL

ϕ ::= > | p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ

LTL formulae interpreted w.r.t. (π, t, λ), where π is a path over some multi-player game, t ∈ N
is a temporal index into π.

2As usual: N agents; Aci actions of player i ; St states; s0 initial state; tr transition function.
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Games

A (2-player) parity game is a tuple H = (V0,V1,E , α)

• zero-sum turn-based

• V = V0 ∪ V1

• E ⊆ V × V

• α : V → N is a labelling priority function

Player 0 wins if the smallest priority that occurs infinitely often in the infinite play is even.

Otherwise, player 1 wins. Can be solved in NP ∩ coNPa.

aMarcin Jurdziński. “Deciding the winner in parity games is in UP ∩ co-UP”. In: Information Processing Letters (1998).
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Games

A multi-player parity game is a tuple GPAR = (M, (αi )i∈N)

• M = (N, (Aci )i∈N,St, s0, tr) is a concurrent game structure (CGS) 3,

• αi : St→ N is the goal of player i , given as a priority function over St.

3As usual: N agents; Aci actions of player i ; St states; s0 initial state; tr transition function.
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Strategies and Plays

Strategy

Finite state machine σi =〈Si , s0
i , δi , τi 〉

• Si , internal state (s0
i initial state);

• δi : Si × Ac→ Si internal transition function;

• τi : Si → Aci action function.

A strategy is a recipe for the agent prescribing the action to take at every time-step of the game

execution. A strategy profile ~σ =〈σ1, . . . , σN〉 assigns a strategy to each agent in the arena.

Play

Given a strategy assigned to every agent in A, denoted ~σ, there is a unique possible execution

π(~σ) called play.

Note that plays can only be ultimately periodic.
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Nash Equilibria

Preference Relation

Let wi be γi if G is an LTL game, and be αi if G is a Parity game. For two strategy profiles ~σ

and ~σ′ in G, we have

π(~σ) �i π(~σ′) if and only if π(~σ′) |= wi implies π(~σ) |= wi .

Nash Equilibrium

a strategy profile ~σ is a Nash equilibrium of G if, for every player i and strategy σ′i ∈ Σi , we have

π(~σ) �i π((~σ−i , σ
′
i ))

where (~σ−i , σ
′
i ) denotes (σ1, . . . , σi−1, σ

′
i , σi+1, . . . , σn), the strategy profile where the strategy

of player i in ~σ is replaced by σ′i .

i.e., no player can benefit by changing its strategy unilaterally.
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NE Characterisation

Theorem (NE characterisation)

Let NE(G) be the set of Nash equilibria in G. A strategy profile ~σ ∈ NE(G)

if and only if

the path π = π(~σ) is such that, for every k ∈ N, the pair (sk ,~a
k) of the k-th position of π is

punishing secure 4 for every j ∈ Lose(π). 5 Where ~ak =〈a1, ..., an〉 is an action profile at k.

Along π, no player j can unilaterally get its goal γj achieved.

4Punishing secure: agent j does not have a strategy σ′j that wins against ~σ−j , i.e. π(~σ−j , σ
′
j ) |= γj .

5Here Lose(π) = {j ∈ N : π 6|= γj} are the agents that are not satisfied over π.
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NE Characterisation via Local Reasoning

• Memory is needed to satisfy LTL goal

• Memory is NOT necessary for (2-player) parity games (memoryless/positional

determinacy)

• Reason locally by converting each γi into deterministic parity word automaton (DPW)

Ai =〈2AP,Q, q0, ρ, α〉.
• Then build GLTL = (M, λ, (γi )i∈N) into GPAR = (M′, (α′i )i∈N), where

M′ = (N, (Aci )i∈N,St′, s ′0, tr′) and (α′i )i∈N:

• St′ = St××i∈N
Qi and s ′0 = (s0, q

0
1 , . . . , q

0
n);

• for each state (s, q1, . . . , qn) ∈ St′ and action profile ~a,

tr′((s, q1, . . . , qn), ~a) = (tr(s, ~a), ρ1(q1, λ(s)), . . . , ρn(qn, λ(s));

• α′i (s, q1, . . . qn) = αi (qi ).

18
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Invariances

Lemma (Goal Invariance)

Let GLTL be an LTL game and GPAR its associated Parity game. Then, for every strategy

profile ~σ and player i , it is the case that π(~σ) |= γi in GLTL if and only if π(~σ) |= αi in GPAR.

Theorem (NE Invariance)

Let GLTL be an LTL game and GPAR its associated Parity game. Then, NE(GLTL) = NE(GPAR).

19
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Visualising NE Characterisation

s0 sk ′

~σ ∈ NE(GPAR)
⇔

states(π(~σ)) ⊆
⋂

j∈Lose Punj(GPAR)
⋂

j∈Lose Punj(GPAR)

~σ′ /∈ NE(GPAR)

π(~σ)

π(~σ′) 6|= αj

π((~σ′−j , σ
′′
j )) |= αj

⋂
j∈Lose Punj(GPAR) is the punishing region for Lose
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Computing Punishing Region

For a GPAR and a (to-be-punished) player j . We turn GPAR into a 2-player zero-sum parity game

Hj = (V0,V1,E , α) between player j (Player 1) and (coalition) player N−j (Player 0). Circular

states are in V0.

s1 s2(~a−j , aj ) s1 (s1, ~a−j ) s2

punishing region for Lose =
⋂

j∈Lose Punj(GPAR)

Corollary

Computing Puni (GPAR) can be done in polynomial time with respect to the size of the

underlying graph of the game GPAR and exponential in the size of the priority function αi ,

that is, to the size of the range of αi . Moreover, there is a memoryless strategy ~σi that is a

punishment against player i in every state s ∈ Puni (GPAR).

21



Computing Punishing Region

For a GPAR and a (to-be-punished) player j . We turn GPAR into a 2-player zero-sum parity game

Hj = (V0,V1,E , α) between player j (Player 1) and (coalition) player N−j (Player 0). Circular

states are in V0.

s1 s2(~a−j , aj ) s1 (s1, ~a−j ) s2

punishing region for Lose =
⋂

j∈Lose Punj(GPAR)

Corollary

Computing Puni (GPAR) can be done in polynomial time with respect to the size of the

underlying graph of the game GPAR and exponential in the size of the priority function αi ,

that is, to the size of the range of αi . Moreover, there is a memoryless strategy ~σi that is a

punishment against player i in every state s ∈ Puni (GPAR).

21



Finding NE Run

s0 sk ′

~σ ∈ NE(GPAR)
⇔

states(π(~σ)) ⊆
⋂

j∈Lose Punj(GPAR)
⋂

j∈Lose Punj(GPAR)

~σ′ /∈ NE(GPAR)

π(~σ)

π(~σ′) 6|= αj

π((~σ′−j , σ
′′
j )) |= αj

How do we compute π(~σ)? Is there such run π(~σ) inside the punishing region?
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Finding NE Run

• π(~σ) must be accepting for each αi , i ∈Win = N \ Lose.

• Solve emptiness problem of DPWs intersection×i∈Win
Ai

• Intersection of DPWs might involve exponential blowup

• Each parity condition α = (F1, . . . ,Fn) is a Streett condition ((E1,C1), . . . , (Em,Cm)) with

m = d n2e and (Ei ,Ci ) = (F2i+1,
⋃

j≤i F2j), for each 0 ≤ i ≤ m

• Intersection of DSWs×i∈Win
Si and nonemptiness check can be done in polynomial time
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The Procedure

1. GLTL ⇒ GPAR

2. For each Win ⊆ N do:

2.1 Compute punishing region⋂
j∈Lose Punj(GPAR)

2.2 Construct DSW×i∈Win
Si

2.3 If L(×i∈Win
Si ) 6= ∅ then return “YES”

3. Return “NO”

• Step 1 can be done in 2EXPTIME: the

number of states is doubly exponential in

the size of LTL goals, but priority functions

(αi )i∈N is only singly exponential.

• Step 2 at most executed exponential in the

number of players

• Step 2.1 is polynomial in the number of

states and exponential in the number of

priorities

• Step 2.2 and 2.3 are both polynomial in

the number of states

• Overall we have 2EXPTIME procedure.
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EVE (Equilibrium Verification Environment)

• Simple Reactive Modules Language (SRML)6 as modelling language

• Supports general-sum multi-player LTL games, bisimulation-invariant strategies, and

perfect recall.

• Supports Non-emptiness, E-Nash, and A-Nash

• Synthesise strategies

• Open-source: https://github.com/eve-mas/eve-parity

• EVE Online: http://eve.cs.ox.ac.uk/

6Based on the Reactive Modules language used by PRISM and MOCHA.
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EVE vs Other Similar Tools

EVE PRALINE7 MCMAS8

Goal language LTL Büchi LTL

Bisim. invariant strategies Yes No No

Memoryful Yes Yes No

7R. Brenguier. “PRALINE: A Tool for Computing Nash Equilibria in Concurrent Games”. In: CAV. 2013.
8Petr Čermák et al. “MCMAS-SLK: A Model Checker for the Verification of Strategy Logic Specifications”. In: CAV. 2014.
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Non-Emptiness Experiment Result9
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Figure 1: Running time for Non-Emptiness

Gossip Protocol.
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Figure 2: Running time for Non-Emptiness

Replica Control Protocol.

Time-out was set to 7200 seconds (2 hours).
9Y-axis is in logarithmic scale.
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E-Nash Experiment Result10
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Figure 3: Running time for E-Nash Gossip

Protocol.
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Figure 4: Running time for E-Nash Replica

Control Protocol.

Time-out was set to 7200 seconds (2 hours).

10Y-axis is in logarithmic scale.
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A-Nash Experiment Result11
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Figure 5: Running time for A-Nash Gossip

Protocol.
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Figure 6: Running time for A-Nash Replica

Control Protocol.

Time-out was set to 7200 seconds (2 hours).

11Y-axis is in logarithmic scale.
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Conclusions

• Two main contributions:

• Novel and optimal decision procedure for rational verification and synthesis

• Complete and efficient implementation

• Future directions:

• Cooperative setting: implementing “core”12 as the solution concept

• Probabilistic systems13

• Decidable classes of imperfect information

12Julian Gutierrez, Sarit Kraus, and Michael Wooldridge. “Cooperative Concurrent Games”. In: AAMAS. 2019.
13Julian Gutierrez et al. “Rational Verification for Probabilistic Systems”. In: KR. to appear. 2021.
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