
Game-Theoretic Verification of
Multi-Agent Systems1

Part I: Introduction

Muhammad Najib
Heriot-Watt University

The 24th European Agent Systems Summer School
(EASSS 2024)

1Adapted from lecture slides by Mike Wooldridge (mjw@cs.ox.ac.uk)
and Julian Gutierrez (Julian.Gutierrez@monash.edu).

1

Overview

1 Intro: verification, LTL, Games
2 Logic and games: Boolean games, adding cost
3 LTL and games: iterated Boolean games
4 Reactive modules games: rational verification in RMGs,

EVE, complexity proof

2

Multi-Agent Systems Finally Happens!

3

Multi-agent systems today

• Thirty years after it was first proposed, agent paradigm is
now mainstream: Siri, Alexa, Cortana. . .

• Next: Siri talking to Siri — multi-agent systems
• But multi-agent systems are already used today
• High frequency (“algorithmic”) traders are exactly that

4

Unpredictable Dynamics

• Unfortunately, multi-agent systems are prone to instability
and have unpredictable dynamics

• October 1987 Market Crash:
the “big bang” led to automated trading systems for first time
simple feedback loops contributed to collapse in market

• May 2010 Flash Crash:
over a 30 minute period, Dow Jones lost over a trillion dollars
Accenture briefly traded at a penny a share
markets swiftly recovered (ish)

5

The Flash Crash
Dow Jones Industrial Average, 6 May 2010

6

The Research Challenge

• Understanding and managing multi-agent dynamics is
essential.

• Treat the flash crash as a bug and try to understand it using
ideas from verification and game theory.

7

Verification and Correctness
Model Checking

• Most successful approach to correctness.
• Idea is to view the state transition graph of a program P as a

model MP for temporal logic, and express correctness criteria
as formula φ of temporal logic

• Verification then reduces to a model checking problem:
MP |= φ

• Hugely successful technique, widely used (SPIN, SMV,
PRISM, MOCHA, MCMAS. . .)

• Most widely used logical specification language: LTL.

8

Model Checking

MODEL

SPECIFICATION

G(req -> F resp)

MODEL CHECKER

"yes, the claim is true
of the model"

"no, the claim is not true
of the model: here is why"

9

Linear Temporal Logic (LTL)

A standard language for talking about infinite state
sequences.

⊤ truth constant
p primitive propositions (∈ Φ)
¬φ classical negation
φ ∨ ψ classical disjunction
Xφ in the next state. . .
Fφ will eventually be the case that φ
Gφ is always the case that φ
φUψ φ until ψ

10

Example LTL formulae

F¬jetlag

eventually I will not have jetlag (a liveness property)

11

Example LTL formulae

G¬crash

the plane will never crash (a safety property)

12

Example LTL formulae

GFdrinkBeer

I will drink beer infinitely often

13

Example LTL formulae

GFdrinkBeer

I will drink beer infinitely often

14

Example LTL formulae

FGdead

Eventually will come a time at which I am dead forever after.

15

Example LTL formulae

FGdead

Eventually will come a time at which I am dead forever after.

16

Example LTL formulae

(¬friends)U youApologise

we are not friends until you apologise

17

Example LTL formulae

(¬friends)U youApologise

we are not friends until you apologise

18

LTL Model Checking

• Complexity of LTL model checking: PSPACE-complete
Assumes state transition graph is explicitly represented in
the input.

• Basic model checking questions:
reachability: is there some computation of the system on
which φ eventually holds?
invariance: does φ hold on all computations of the system?

19

Assumptions in the Classical View of Correctness

• The standard model of verification assumes an absolute
standard of correctness

• The specifier is able to say “the system is correct” or “the
system is not correct”

• The specifier enjoys a privileged position
• For many systems, this is simply not appropriate. . .
• It makes no sense to ask whether the internet is “correct”!
• So what can we do instead?

20

Rational Verification

• We adopt a game theoretic standpoint
• Assume system components are rational actors, and that

they act as best they can to bring about their preferences
• Appropriate analytical concepts are then game theoretic

solution concepts, in particular, equilibrium properties
such as Nash equilibrium

• Reachability and invariance are not appropriate in this
setting: we are interested in whether properties will obtain
under the assumption of rational action

• Some computations will not arise because they involve
irrational action

• Key concepts:
“Nash reachability” (E-Nash) and
“Nash invariance” (A-Nash)

21

Rational Verification

MODEL

QUERY

G(req -> F resp)

RATIONAL MODEL CHECKER

"the claim is true
in some equilibrium"

"no, the claim
does not hold in
any equilibrium

PLAYER PREFERENCES

22

Games
• Game theoretic standpoint: turn MAS into games
• What is a game?

23

What is a Game?

Ingredients:
1 Several decision makers: players or agents
2 Players have different goals
3 Each player can act to affect the outcome

24

Types of Games

Two major types (in Economics):
1 Extensive form
2 Strategic/Normal form

25

Extensive Form Games

• Explicit temporal structure

• Each non-terminal node owned by one player (whose turn)
• Edges correspond to possible actions

26

Extensive Form Games

• Explicit temporal structure
• Each non-terminal node owned by one player (whose turn)

• Edges correspond to possible actions

27

Extensive Form Games

• Explicit temporal structure
• Each non-terminal node owned by one player (whose turn)
• Edges correspond to possible actions

28

Extensive Form Games

Is there a NE?

NE: a strategy profile where no player could benefit by changing
their own strategy (holding all other players’ strategies fixed)

29

Extensive Form Games

Who has a winning strategy? Abelard or Eloise?

Eloise.
If Abelard chooses a then choose d , else choose c.

30

Extensive Form Games

Who has a winning strategy? Abelard or Eloise? Eloise.

If Abelard chooses a then choose d , else choose c.

31

Extensive Form Games

Who has a winning strategy? Abelard or Eloise? Eloise.
If Abelard chooses a then choose d , else choose c.

32

Extensive Form Games

What about this?

33

Extensive Form Games

What about this? Abelard.

Choose b.

34

Extensive Form Games

What about this? Abelard.
Choose b.

35

Strategic/Normal Form Games

• Emphasise players’ available strategies

• No temporal structure

36

Strategic/Normal Form Games

• Emphasise players’ available strategies
• No temporal structure

37

Strategic/Normal Form Games

Is there a NE?

Who has winning strategy? Eloise. Choose b

38

Strategic/Normal Form Games

Is there a NE? Who has winning strategy?

Eloise. Choose b

39

Strategic/Normal Form Games

Is there a NE? Who has winning strategy? Eloise.

Choose b

40

Strategic/Normal Form Games

Is there a NE? Who has winning strategy? Eloise. Choose b

41

Strategic/Normal Form Games

Who has winning strategy?

42

Strategic/Normal Form Games

Who has winning strategy? Nobody.

No NE...

43

Strategic/Normal Form Games

Who has winning strategy? Nobody.

No NE...

44

Which model is appropriate for the Rock-Paper-Scissors game?

Figure: From http://gametheory101.com/

Is there a NE?

45

Which model is appropriate for the Rock-Paper-Scissors game?

Figure: From http://gametheory101.com/

Is there a NE?

46

Which model is appropriate for the Rock-Paper-Scissors game?

Figure: From http://gametheory101.com/

Is there a NE?

47

Game-Theoretic Verification of
Multi-Agent Systems2

Part II: Logic and Games

Muhammad Najib
Heriot-Watt University

The 24th European Agent Systems Summer School
(EASSS 2024)

2Adapted from lecture slides by Mike Wooldridge (mjw@cs.ox.ac.uk)
and Julian Gutierrez (Julian.Gutierrez@monash.edu).

48

Boolean Games

49

Boolean Games

• A natural class of compactly specified games
• Important from point of view of logic, games, multi-agent

systems
• Basic idea is to specify player preferences via logical

formula.
• Players strictly prefer to get their goal achieved rather than

otherwise.

50

Reminder: Normal Form Games

A normal form game is given by a structure

G = (N,Σ1, . . . ,Σn,u1, . . . ,un)

where:
• N = {1, . . . ,n} is the set of players
• Σi is the set of strategies (choices) for i ∈ N;
• ui : Σ1 × · · · × Σn → R is the utility function for i , which

captures i ’s preferences.
Each player i must choose an element of Σi . When players
have made choices, the resulting strategy profile
σ⃗ = (σ1, . . . , σn) gives player i utility ui(σ1, . . . , σn).
Players aim to maximise utility.

51

Reminder: Nash Equilibrium

• A collection of choices (σ1, . . . , σn) is an NE if no player could
benefit by unilaterally deviating.

• This means there is no player i and choice σ′i ∈ Σi such that

ui(σ1 . . . , σ
′
i , . . . , σn) > ui(σ1 . . . , σi , . . . , σn).

• NE is the basic concept of rational choice in normal form
games.

52

Boolean Games

Formally, a Boolean game G is given by:

• N = {1, . . . ,n}
the players

• Φ = {p,q, . . .}
a finite set of Boolean variables

• Φi ⊆ Φ for each i ∈ N
the set of variables under the control of i : we require:

Φi ∩ Φj = ∅ for i ̸= j
Φ1 ∪ · · · ∪ Φn = Φ.

The assignments that i can make to Φi are the
actions/strategies available to i .

• γi for each i ∈ N
goal of agent i – the specification for i – propositional logic

formula over Φ.

53

Boolean Games

Formally, a Boolean game G is given by:
• N = {1, . . . ,n}

the players

• Φ = {p,q, . . .}
a finite set of Boolean variables

• Φi ⊆ Φ for each i ∈ N
the set of variables under the control of i : we require:

Φi ∩ Φj = ∅ for i ̸= j
Φ1 ∪ · · · ∪ Φn = Φ.

The assignments that i can make to Φi are the
actions/strategies available to i .

• γi for each i ∈ N
goal of agent i – the specification for i – propositional logic

formula over Φ.

54

Boolean Games

Formally, a Boolean game G is given by:
• N = {1, . . . ,n}

the players
• Φ = {p,q, . . .}

a finite set of Boolean variables

• Φi ⊆ Φ for each i ∈ N
the set of variables under the control of i : we require:

Φi ∩ Φj = ∅ for i ̸= j
Φ1 ∪ · · · ∪ Φn = Φ.

The assignments that i can make to Φi are the
actions/strategies available to i .

• γi for each i ∈ N
goal of agent i – the specification for i – propositional logic

formula over Φ.

55

Boolean Games

Formally, a Boolean game G is given by:
• N = {1, . . . ,n}

the players
• Φ = {p,q, . . .}

a finite set of Boolean variables
• Φi ⊆ Φ for each i ∈ N

the set of variables under the control of i : we require:
Φi ∩ Φj = ∅ for i ̸= j
Φ1 ∪ · · · ∪ Φn = Φ.

The assignments that i can make to Φi are the
actions/strategies available to i .

• γi for each i ∈ N
goal of agent i – the specification for i – propositional logic

formula over Φ.

56

Boolean Games

Formally, a Boolean game G is given by:
• N = {1, . . . ,n}

the players
• Φ = {p,q, . . .}

a finite set of Boolean variables
• Φi ⊆ Φ for each i ∈ N

the set of variables under the control of i : we require:
Φi ∩ Φj = ∅ for i ̸= j
Φ1 ∪ · · · ∪ Φn = Φ.

The assignments that i can make to Φi are the
actions/strategies available to i .

• γi for each i ∈ N
goal of agent i – the specification for i – propositional logic

formula over Φ.

57

Outcomes

• A strategy for agent i is an assignment

σi : Φi → B

Agent i chooses a value for all its variables.
• An strategy profile is a collection of choices, one for each

agent:
σ⃗ = (σ1, . . . , σn)

• A strategy profile induces a propositional valuation: we write

σ⃗ |= φ

to mean that φ is satisfied by the valuation induced by σ⃗.
• A strategy profile will thus either satisfy/fail to satisfy each

player’s goal.

58

Utilities

For each player i we can define a utility function over strategy
profiles — player gets utility 1 if goal satisfied, 0 otherwise:

ui(σ⃗) =

{
1 if σ⃗ |= γi
0 otherwise.

Preferences:
• Players strictly prefer to get their goal achieved than

otherwise.
• Indifferent between outcomes that satisfy goal.
• Indifferent between outcomes that fail to satisfy goal.
A Boolean game thus induces a normal form game.

59

An Example

Suppose:
Φ1 = {p}
Φ2 = {q, r}
γ1 = q
γ2 = q ∨ r

What are the NE?

60

Another Example

Φ1 = {p}
Φ2 = {q}
γ1 = p ↔ q
γ2 = ¬(p ↔ q)

What are the NE?

⇒ Some Boolean games have no NE.

61

Another Example

Φ1 = {p}
Φ2 = {q}
γ1 = p ↔ q
γ2 = ¬(p ↔ q)

What are the NE?

⇒ Some Boolean games have no NE.

62

Decision Problems

• Membership:
Given a game G and strategy profile σ⃗, is σ⃗ ∈ NE(G)?

• Non-Emptiness:
Given a game G, is NE(G) ̸= ∅?

63

NE Membership is co-NP-complete

Work with the complement problem, of verifying that some
player has a beneficial deviation.
• Membership of NP: Guess a player i and strategy σ′i and

verify that i does better with σ′i than their component of σ⃗.
• NP Hardness: Reduce SAT. Given SAT instance φ define

1-player game with γ1 = φ ∧ z where z is a new variable.
Define strategy σ1 which sets all variables to false. φ is then
satisfiable iff i has a beneficial deviation from σ1.

64

Non-Emptiness is Σp
2-complete

Membership

The game has an NE iff the following statement is true:

∃σ⃗
∧
i∈N

(
σ⃗ ̸|= γi → (∀σ′i : (σ⃗−i , σ

′
i) ̸|= γi)

)
The statement above is an instance of QBF2,∃, whose
satisfiability can be checked in Σp

2.

65

Non-Emptiness is Σp
2-complete

Hardness

Reduce QBF2,∃ to the problem of non-emptiness in a 2-player
Boolean games.
Suppose ∃X∀Yψ(X ,Y) is the QBF2,∃ instance.
Define a game with:
• Φ1 = X ∪ {x} and γ1 = ψ(X ,Y) ∨ (x ↔ y)
• Φ2 = Y ∪ {y} and γ2 = ¬ψ(X ,Y) ∧ ¬(x ↔ y)
Only NE if ∃X∀Yψ(X ,Y) is true.

66

Introducing Costs

67

Boolean Games with Costs

• Introduce costs to Boolean games: assigning a value to a
variable induces a cost on the agent making the assignment.

• Preferences:
Primary aim is to achieve goals
Secondary aim is to minimise costs.

• Cost = energy requirements, time associated with actions. . .

68

Boolean Games with Costs

Formally, a Boolean game with costs is given by a structure

G = (N,Φ1, . . . ,Φn, γ1, . . . , γn, c)

where (N,Φ1, . . . ,Φn, γ1, . . . , γn) is a Boolean game and

c : Φ× B → R≥

is a cost function: c(p,b) is the cost of assigning b ∈ B to p.

Let ci(σi) be the total cost of player i ’s choice σi :

ci(σi) =
∑
p∈Φi

c(p, σi(p))

69

Utility Again

Given game G the utility to i of outcome (σ1, . . . , σn) is given by:

ui(σ1, . . . , σn) =

{
1 + µi − ci(σi) if (σ1, . . . , σn) |= γi
−ci(σi) otherwise.

where µi is the cost of the most expensive choice to i :

µi = max{ci(σi) | σi ∈ Σi}

Properties:

1 an agent prefers all outcomes that satisfy its goal over all those that do not
satisfy it;

2 between two outcomes that satisfy its goal, an agent prefers the one that
minimises total cost; and

3 between two valuations that do not satisfy its goal, an agent prefers to
minimise total cost.

70

Utility Again

Given game G the utility to i of outcome (σ1, . . . , σn) is given by:

ui(σ1, . . . , σn) =

{
1 + µi − ci(σi) if (σ1, . . . , σn) |= γi
−ci(σi) otherwise.

where µi is the cost of the most expensive choice to i :

µi = max{ci(σi) | σi ∈ Σi}
Properties:

1 an agent prefers all outcomes that satisfy its goal over all those that do not
satisfy it;

2 between two outcomes that satisfy its goal, an agent prefers the one that
minimises total cost; and

3 between two valuations that do not satisfy its goal, an agent prefers to
minimise total cost.

71

Let’s See Who is Awake. . .

• Suppose σ⃗ is an NE such that σ⃗ ̸|= γi . What can we say
about player i ’s choice in σ⃗?

Player i ’s choice σi satisfies

σi ∈ arg min
σ′∈Σi

ci(σ
′)

• What is the largest utility a player can get? 1 + µi

• What is the smallest utility a player can get? −µi

• What is the smallest utility a player can get if they get their
goal achieved? 1

• What is the largest utility a player can get if they don’t get
their goal achieved? 0

72

Let’s See Who is Awake. . .

• Suppose σ⃗ is an NE such that σ⃗ ̸|= γi . What can we say
about player i ’s choice in σ⃗? Player i ’s choice σi satisfies

σi ∈ arg min
σ′∈Σi

ci(σ
′)

• What is the largest utility a player can get?

1 + µi

• What is the smallest utility a player can get? −µi

• What is the smallest utility a player can get if they get their
goal achieved? 1

• What is the largest utility a player can get if they don’t get
their goal achieved? 0

73

Let’s See Who is Awake. . .

• Suppose σ⃗ is an NE such that σ⃗ ̸|= γi . What can we say
about player i ’s choice in σ⃗? Player i ’s choice σi satisfies

σi ∈ arg min
σ′∈Σi

ci(σ
′)

• What is the largest utility a player can get? 1 + µi

• What is the smallest utility a player can get?

−µi

• What is the smallest utility a player can get if they get their
goal achieved? 1

• What is the largest utility a player can get if they don’t get
their goal achieved? 0

74

Let’s See Who is Awake. . .

• Suppose σ⃗ is an NE such that σ⃗ ̸|= γi . What can we say
about player i ’s choice in σ⃗? Player i ’s choice σi satisfies

σi ∈ arg min
σ′∈Σi

ci(σ
′)

• What is the largest utility a player can get? 1 + µi

• What is the smallest utility a player can get? −µi

• What is the smallest utility a player can get if they get their
goal achieved?

1
• What is the largest utility a player can get if they don’t get

their goal achieved? 0

75

Let’s See Who is Awake. . .

• Suppose σ⃗ is an NE such that σ⃗ ̸|= γi . What can we say
about player i ’s choice in σ⃗? Player i ’s choice σi satisfies

σi ∈ arg min
σ′∈Σi

ci(σ
′)

• What is the largest utility a player can get? 1 + µi

• What is the smallest utility a player can get? −µi

• What is the smallest utility a player can get if they get their
goal achieved? 1

• What is the largest utility a player can get if they don’t get
their goal achieved?

0

76

Let’s See Who is Awake. . .

• Suppose σ⃗ is an NE such that σ⃗ ̸|= γi . What can we say
about player i ’s choice in σ⃗? Player i ’s choice σi satisfies

σi ∈ arg min
σ′∈Σi

ci(σ
′)

• What is the largest utility a player can get? 1 + µi

• What is the smallest utility a player can get? −µi

• What is the smallest utility a player can get if they get their
goal achieved? 1

• What is the largest utility a player can get if they don’t get
their goal achieved? 0

77

An Example

Suppose:

Φ1 = {p}
Φ2 = {q, r}
γ1 = q
γ2 = q ∨ r

All costs are 0

c2(q,⊤) = 5
c2(q,⊥) = c2(r ,⊤) = c2(r ,⊥) = 0

Other costs are 0

What are the NE?

78

An Example

Suppose:

Φ1 = {p}
Φ2 = {q, r}
γ1 = q
γ2 = q ∨ r

All costs are 0

c2(q,⊤) = 5
c2(q,⊥) = c2(r ,⊤) = c2(r ,⊥) = 0

Other costs are 0

What are the NE?

79

What if there are more than one rounds?

80

Game-Theoretic Verification of
Multi-Agent Systems3

Part III: LTL and Games

Muhammad Najib
Heriot-Watt University

The 24th European Agent Systems Summer School
(EASSS 2024)

3Adapted from lecture slides by Mike Wooldridge (mjw@cs.ox.ac.uk)
and Julian Gutierrez (Julian.Gutierrez@monash.edu).

81

Iterated Boolean Games (iBG)

• A model of multi-agent systems in which players repeatedly
choose truth values for Boolean variables under their control.

• Players behave selfishly in order to achieve individual goals.
• Goals expressed as Linear Temporal Logic (LTL) formulae.

82

Iterated Boolean games

An iBG is a structure

G = (N,Φ,Φ1, . . . ,Φn, γ1, . . . , γn)

where
• N = {1, . . . ,n} is a set of agents (the players of the game),
• Φ = {p,q, . . .} is a finite set of Boolean variables,
• Φi ⊆ Φ is the set of variables controlled by player i ,
• γi is the LTL goal of player i .

83

Models for LTL

• Let V be the set of valuations of Boolean variables Φ.
• Let Vi be the valuations for the variables Φi controlled by

player i .
• Models of LTL formulae φ are runs ρ: infinite sequences

in Vω.
• We write ρ |= φ to mean ρ satisfies LTL formula φ.

84

Playing an iBG

• Players play an infinite number of rounds, where on each
round each player chooses values for their variables.

• The sequence of valuations traced out in this way forms a
run, which either satisfies or doesn’t satisfy a player’s goal.

• A strategy for i is thus abstractly a function

f : V ∗ → Vi

. . . but this isn’t a practicable representation.
• So we model strategies as finite state machines (FSM)

with output (transducers).

85

Machine strategies

A machine strategy for i is a structure:

σi = (Qi ,q0
i , δi , τi)

where:
• Qi is a finite, non-empty set of states,
• q0

i is the initial state,
• δi : Qi × V → Qi is a state transition function,
• τi : Qi → Vi is a choice function.

86

Strategy profiles

• A strategy profile σ⃗ is an n-tuple of machine strategies, one
for each player i :

σ⃗ = (σ1, . . . , σn).

• As strategies are deterministic, each strategy profile σ⃗
induces a unique run: ρ(σ⃗).

87

Nash Equilibrium

Strategy profile σ⃗ = (σ1, . . . , σi , . . . , σn) is a (pure strategy)
Nash equilibrium if for all players i ∈ N, if ρ(σ⃗) ̸|= γi then for all
σ′i we have

ρ(σ1, . . . , σ
′
i , . . . , σn) ̸|= γi

Let NE(G) denote the Nash equilibria of a given iBG G.

88

An Example

• N = {1,2},
• Φ1 = {p}
• Φ2 = {q}
• γ1 = GF(p ↔ q)
• γ2 = GF¬(p ↔ q)

p

player 1

q

player 2

~q

q, ~q

p, ~p

p, ~p

These strategies form a NE.

89

Decision problems

MODEL CHECKING:
Given: Game G, strategy profile σ⃗, and LTL formula φ.
Question: Is it the case that ρ(σ⃗) |= φ?

MEMBERSHIP:
Given: Game G, strategy profile σ⃗.
Question: Is it the case that σ⃗ ∈ NE(G)?

Theorem
The MODEL CHECKING and MEMBERSHIP problems are
PSPACE-complete.

Proof: follow from the fact that we can encode FSM strategies
as LTL formulae.

90

Decision problems

MODEL CHECKING:
Given: Game G, strategy profile σ⃗, and LTL formula φ.
Question: Is it the case that ρ(σ⃗) |= φ?

MEMBERSHIP:
Given: Game G, strategy profile σ⃗.
Question: Is it the case that σ⃗ ∈ NE(G)?

Theorem
The MODEL CHECKING and MEMBERSHIP problems are
PSPACE-complete.

Proof: follow from the fact that we can encode FSM strategies
as LTL formulae.

91

Decision problems

E-NASH:
Given: Game G, LTL formula φ.
Question:∃σ⃗ ∈ NE(G). ρ(σ⃗) |= φ?

A-NASH:
Given: Game G, LTL formula φ.
Question: ∀σ⃗ ∈ NE(G). ρ(σ⃗) |= φ?

NON-EMPTINESS:
Given: Game G.
Question: Is it the case that NE(G) ̸= ∅?

Theorem
The E-NASH, A-NASH, and NON-EMPTINESS problems are
2EXPTIME-complete.

Proof: we can reduce LTL synthesis (Pnueli & Rosner, 1989)

92

Decision problems

E-NASH:
Given: Game G, LTL formula φ.
Question:∃σ⃗ ∈ NE(G). ρ(σ⃗) |= φ?

A-NASH:
Given: Game G, LTL formula φ.
Question: ∀σ⃗ ∈ NE(G). ρ(σ⃗) |= φ?

NON-EMPTINESS:
Given: Game G.
Question: Is it the case that NE(G) ̸= ∅?

Theorem
The E-NASH, A-NASH, and NON-EMPTINESS problems are
2EXPTIME-complete.

Proof: we can reduce LTL synthesis (Pnueli & Rosner, 1989)
93

Want to Find Out More?

• J. Gutierrez, M. Najib, G. Perelli, and M. Wooldridge. On Computational Tractability for Rational
Verification. In Proceedings of the Twenty Eighth International Joint Conference on Artificial
Intelligence (IJCAI-2019). Macao, China, August 2019.

• J. Gutierrez, P. Harrenstein, M. Wooldridge. From model checking to equilibrium checking: Reactive
modules for rational verification. In Artificial Intelligence 248:123–157, 2017.

• J. Gutierrez, P. Harrenstein, M. Wooldridge. Reasoning about Equilibria in Game-like Concurrent Systems.
In Annals of Pure and Applied Logic, 168(2):373–403, February 2017.

• J. Gutierrez, P. Harrenstein, and M. Wooldridge. Iterated Boolean Games. In Information & Computation,
242:53–79, 2015.

• J. Gutierrez, P. Harrenstein, G. Perelli, and M. Wooldridge. Nash Equilibrium and Bisimulation Invariance. In
Proceedings of CONCUR-2017, Berlin, Germany, September 2017.

• J. Paulin, A. Calinescu, and M. Wooldridge. Understanding Flash Crash Contagion and Systemic Risk: A
Micro-Macro Agent-Based Approach. In Journal of Economic Dynamics and Control, Volume 100, Pages
200-229, March 2019.

94

Game-Theoretic Verification of
Multi-Agent Systems4

Part IV: Reactive Modules Games

Muhammad Najib
Heriot-Watt University

The 24th European Agent Systems Summer School
(EASSS 2024)

4Adapted from lecture slides by Mike Wooldridge (mjw@cs.ox.ac.uk)
and Julian Gutierrez (Julian.Gutierrez@monash.edu).

95

Reactive Modules Games

• iBGs are an abstraction of multi-agent systems, with some
limitating assumptions (all players can choose any valuation
for their variables)

• Practical model checkers use high-level model specification
languages.

• Reactive modules is such a language:
a guarded command language for model specification
introduced by Alur & Henzinger in 1999
used in MOCHA, PRISM, . . .

96

Reactive Modules

A multi-agent system is specified by a number of modules
(=agents).

module toggle controls x
init
:: ⊤ ~> x ′ := ⊤;
:: ⊤ ~> x ′ := ⊥;
update
:: x ~> x ′ := ⊥;
:: ¬x ~>x ′ := ⊤;

A module has
1 an interface: name (toggle) and controlled variables (x)
2 a number of init and update guarded commands (::)

97

Reactive Module Arenas

An arena A is an (n + 2)-tuple:

A = ⟨N,Φ,m1, . . . ,mn⟩,

where:
• N = {1, . . . ,n} is a set of agents
• Φ is a set of Boolean variables
• for each i ∈ N, mi = ⟨Φi , Ii ,Ui⟩ is a module over Φ that

defines the choices available to agent i .

98

Reactive Module Games

A reactive module game (RMG) is a tuple:

G = ⟨A, γ1, . . . , γn⟩

where:
• A is an arena
• for each player i in A, γi is the temporal logic goal of i .
Players choose deterministic FSM strategies
Deterministic strategies are controllers

99

Rational Verification in RMGs

SYSTEM

G(req -> F resp)

RATIONAL MODEL CHECKER

"the claim is true
in some equilibrium"

"no, the claim
does not hold in
any equilibrium

PLAYER GOALSmodule A controls x1, ...
init ...
update ...

module B controls y1, ...
init ...
update ...

QUERY

�1 : Gp _ r
�2 : Gr ! Fz
· · ·

100

LTL Reactive Module Games

NE-MEMBERSHIP

Given: RMG G and strategy profile σ⃗.
Question: Is it the case that σ⃗ ∈ NE(G)?

Theorem
NE-MEMBERSHIP for LTL RMGs is PSPACE-complete.

NON-EMPTINESS

Given: RMG G.
Question: Is it the case that NE(G) ̸= ∅?

Theorem
NON-EMPTINESS for LTL RMGs is 2EXPTIME-complete, and it
is 2EXPTIME-hard for 2-player games.

101

LTL Reactive Module Games

E-NASH

Given: RMG G, LTL formula φ.
Question: Does ρ(σ⃗) |= φ hold for some σ⃗ ∈ NE(G)?

A-NASH

Given: RMG G, LTL formula φ.
Question: Does ρ(σ⃗) |= φ hold for all σ⃗ ∈ NE(G)?

Theorem

The E-NASH and A-NASH problems for LTL RMGs are both
2EXPTIME-complete.

102

Expressiveness

With respect iBGs, in general, RMGs may have different:

• Strategic power — different sets of available strategies
• Specification size — players’ choices can be bounded

103

First difference: Strategic power

GiBG = ({1}, {x}, γ1) vs GRML = ({1}, {x}, γ1, toggle1)

• Implicitly represented arena for the iBG:

• Succinctly represented arena for the RMG:

104

Second difference: Specification size

From G = ({1},Φ = {x , y},Φ1 = {x , y}, γ1)

To
module G2RM controls x , y
init
:: ⊤ ~> x ′ := ⊤ ; y ′ := ⊤;
:: ⊤ ~> x ′ := ⊤ ; y ′ := ⊥;
:: ⊤ ~> x ′ := ⊥ ; y ′ := ⊤;
:: ⊤ ~> x ′ := ⊥ ; y ′ := ⊥;
update
:: ⊤ ~> x ′ := ⊤ ; y ′ := ⊤;
:: ⊤ ~> x ′ := ⊤ ; y ′ := ⊥;
:: ⊤ ~> x ′ := ⊥ ; y ′ := ⊤;
:: ⊤ ~> x ′ := ⊥ ; y ′ := ⊥;

We have |G| = |Φ|+ |γ1| and |G2RM| = O(2|Φ|) + |γ1|.
105

EVE: Verification Environment
https://eve.cs.ox.ac.uk

• We have implemented a tool for equilibrium checking RMGs.
• Takes as input:

1 arena A specified in RML
2 goals γ1, . . . , γn for each player, specified in LTL

• computes NON-EMPTINESS, E-NASH and A-NASH problems
• combined parity games and automata-theoretic approach

106

Example: RMGs in EVE

Infinitely repeated matching pennies using RMGs:

module alice controls p
init
:: ⊤ ~> p′ := ⊤;
:: ⊤ ~> p′ := ⊥;
update
:: ⊤ ~> p′ := ⊤;
:: ⊤ ~> p′ := ⊥;
goal
:: GF(p ↔ q);

module bob controls q
init
:: ⊤ ~> q′ := ⊤;
:: ⊤ ~> q′ := ⊥;
update
:: ⊤ ~> q′ := ⊤;
:: ⊤ ~> q′ := ⊥;
goal
:: GF¬(p ↔ q);

The SRML code of the above can be found here: https:
//eve.cs.ox.ac.uk/examples/mp_example.txt
Note that there are differences in the syntax used by EVE.
Try to run the code on EVE online

https://eve.cs.ox.ac.uk/eve
107

https://eve.cs.ox.ac.uk/examples/mp_example.txt
https://eve.cs.ox.ac.uk/examples/mp_example.txt
https://eve.cs.ox.ac.uk/eve

Exercise/Example 1

Design an RMG that has a Nash equilibrium, but such that the
iBG over the same sets of controlled Boolean variables does
not. Verify your solution using EVE.
Rule: You are not allowed to change the goals

Idea:
• Design an iBG that has no NE
• Specify in RMG
• “Restrict” the actions to introduce NE
SRML code:
https://eve.cs.ox.ac.uk/examples/mp_none.txt

108

https://eve.cs.ox.ac.uk/examples/mp_none.txt

Exercise/Example 1

Design an RMG that has a Nash equilibrium, but such that the
iBG over the same sets of controlled Boolean variables does
not. Verify your solution using EVE.
Rule: You are not allowed to change the goals
Idea:

• Design an iBG that has no NE
• Specify in RMG
• “Restrict” the actions to introduce NE
SRML code:
https://eve.cs.ox.ac.uk/examples/mp_none.txt

109

https://eve.cs.ox.ac.uk/examples/mp_none.txt

Exercise/Example 1

Design an RMG that has a Nash equilibrium, but such that the
iBG over the same sets of controlled Boolean variables does
not. Verify your solution using EVE.
Rule: You are not allowed to change the goals
Idea:
• Design an iBG that has no NE

• Specify in RMG
• “Restrict” the actions to introduce NE
SRML code:
https://eve.cs.ox.ac.uk/examples/mp_none.txt

110

https://eve.cs.ox.ac.uk/examples/mp_none.txt

Exercise/Example 1

Design an RMG that has a Nash equilibrium, but such that the
iBG over the same sets of controlled Boolean variables does
not. Verify your solution using EVE.
Rule: You are not allowed to change the goals
Idea:
• Design an iBG that has no NE
• Specify in RMG

• “Restrict” the actions to introduce NE
SRML code:
https://eve.cs.ox.ac.uk/examples/mp_none.txt

111

https://eve.cs.ox.ac.uk/examples/mp_none.txt

Exercise/Example 1

Design an RMG that has a Nash equilibrium, but such that the
iBG over the same sets of controlled Boolean variables does
not. Verify your solution using EVE.
Rule: You are not allowed to change the goals
Idea:
• Design an iBG that has no NE
• Specify in RMG
• “Restrict” the actions to introduce NE

SRML code:
https://eve.cs.ox.ac.uk/examples/mp_none.txt

112

https://eve.cs.ox.ac.uk/examples/mp_none.txt

Exercise/Example 1

Design an RMG that has a Nash equilibrium, but such that the
iBG over the same sets of controlled Boolean variables does
not. Verify your solution using EVE.
Rule: You are not allowed to change the goals
Idea:
• Design an iBG that has no NE
• Specify in RMG
• “Restrict” the actions to introduce NE
SRML code:
https://eve.cs.ox.ac.uk/examples/mp_none.txt

113

https://eve.cs.ox.ac.uk/examples/mp_none.txt

Exercise/Example 2

Consider a peer-to-peer network with 2 agents. At each time
step, each agent either tries to download or to upload. In order
for one agent to download successfully, the other must be
uploading at the same time, and both are interested in
downloading infinitely often.

1 Use EVE to verify whether there exists a NE where both
agents’ goals are satisfied.

2 Use EVE to verify whether in all NE, both agents’ goals are
satisfied.

3 What modifications can be made so that query 2 above
returns positively? Without changing the goals...

SRML code:
https://eve.cs.ox.ac.uk/examples/p2p.txt

114

https://eve.cs.ox.ac.uk/examples/p2p.txt

Exercise/Example 2

Consider a peer-to-peer network with 2 agents. At each time
step, each agent either tries to download or to upload. In order
for one agent to download successfully, the other must be
uploading at the same time, and both are interested in
downloading infinitely often.
1 Use EVE to verify whether there exists a NE where both

agents’ goals are satisfied.

2 Use EVE to verify whether in all NE, both agents’ goals are
satisfied.

3 What modifications can be made so that query 2 above
returns positively? Without changing the goals...

SRML code:
https://eve.cs.ox.ac.uk/examples/p2p.txt

115

https://eve.cs.ox.ac.uk/examples/p2p.txt

Exercise/Example 2

Consider a peer-to-peer network with 2 agents. At each time
step, each agent either tries to download or to upload. In order
for one agent to download successfully, the other must be
uploading at the same time, and both are interested in
downloading infinitely often.
1 Use EVE to verify whether there exists a NE where both

agents’ goals are satisfied.
2 Use EVE to verify whether in all NE, both agents’ goals are

satisfied.

3 What modifications can be made so that query 2 above
returns positively? Without changing the goals...

SRML code:
https://eve.cs.ox.ac.uk/examples/p2p.txt

116

https://eve.cs.ox.ac.uk/examples/p2p.txt

Exercise/Example 2

Consider a peer-to-peer network with 2 agents. At each time
step, each agent either tries to download or to upload. In order
for one agent to download successfully, the other must be
uploading at the same time, and both are interested in
downloading infinitely often.
1 Use EVE to verify whether there exists a NE where both

agents’ goals are satisfied.
2 Use EVE to verify whether in all NE, both agents’ goals are

satisfied.
3 What modifications can be made so that query 2 above

returns positively?

Without changing the goals...
SRML code:
https://eve.cs.ox.ac.uk/examples/p2p.txt

117

https://eve.cs.ox.ac.uk/examples/p2p.txt

Exercise/Example 2

Consider a peer-to-peer network with 2 agents. At each time
step, each agent either tries to download or to upload. In order
for one agent to download successfully, the other must be
uploading at the same time, and both are interested in
downloading infinitely often.
1 Use EVE to verify whether there exists a NE where both

agents’ goals are satisfied.
2 Use EVE to verify whether in all NE, both agents’ goals are

satisfied.
3 What modifications can be made so that query 2 above

returns positively? Without changing the goals...

SRML code:
https://eve.cs.ox.ac.uk/examples/p2p.txt

118

https://eve.cs.ox.ac.uk/examples/p2p.txt

Exercise/Example 2

Consider a peer-to-peer network with 2 agents. At each time
step, each agent either tries to download or to upload. In order
for one agent to download successfully, the other must be
uploading at the same time, and both are interested in
downloading infinitely often.
1 Use EVE to verify whether there exists a NE where both

agents’ goals are satisfied.
2 Use EVE to verify whether in all NE, both agents’ goals are

satisfied.
3 What modifications can be made so that query 2 above

returns positively? Without changing the goals...
SRML code:
https://eve.cs.ox.ac.uk/examples/p2p.txt

119

https://eve.cs.ox.ac.uk/examples/p2p.txt

A glimpse at the complexity: 2EXPTIME proof

Theorem
E-NASH is 2EXPTIME-complete.

Proof: Requires

• LTL synthesis (part 1),

• solving a collection of parity games (part 2),

• solving a product of Streett automata (part 3).

120

E-NASH complexity: Proof outline

• Part 1: A “standard” LTL to parity games reduction
From LTL formulae to Rabin automata on infinite trees
From deterministic Rabin automata on infinite trees to
deterministic parity automata on infinite words

• Part 2: NE characterisation using parity games
From deterministic parity automata on infinite words to the
construction of a multi-player parity game
Computing punishment regions in a collection of parity games

• Part 3: Definition of a path finding procedure over a product
of deterministic Streett automata on infinite words

121

More about the complexity...

• Exponential in the size of the multi-agent system (SRML input).

• Exponential in the number of players, |N|.
• Doubly exponential in the size of the LTL goals in {γi}i∈N .

• Doubly exponential in the size of the LTL specification/query φ.

122

E-NASH complexity: Proof outline – Part 1

• Part 1: A “standard” LTL to parity games reduction
From LTL formulae to Rabin automata on infinite trees
From deterministic Rabin automata on infinite trees to
deterministic parity automata on infinite words

Theorem
Let G = (M, {γi}i∈N) be an LTL game and G′ = (M ′, {α′

i}i∈N)
be its associated Parity game. Then, NE(G) = NE(G′).

Proof: Showing that for every strategy profile σ⃗ and player i , it is the
case that ρ(σ⃗) |= γi in M if and only if ρ(σ⃗) |= α′

i in M ′.

123

ENASH complexity: Proof outline – Part 2

From Part 1 we get:

M ′ = AM ×
∏
i∈N

Aγi

• Part 2: NE characterisation using parity games
From deterministic parity automata on infinite words to the
construction of a multi-player parity game
Computing punishment regions for several parity games.

Punishment region for player j: set of states in M ′ from which
the coalition i = N \ {j} can ensure that (has a strategy such
that) player j does not get its parity goal α′

j satisfied.
124

E-NASH complexity: Proof outline – Part 2

• Part 2: NE characterisation using parity games
From deterministic parity automata on infinite words to the
construction of a multi-player parity game
Computing punishment regions in a collection of parity
games: For each L ⊆ N, compute M ′′

L from M ′, a game G′′
L .

A path of M ′′
L that can be sustained in equilibrium by σ⃗ satisfies:

• all goals of players not in L and no goal for players in L, and
• states(ρ(σ⃗)) ⊆ ⋂

j∈L Punj , if L ̸= ∅, and
• states(ρ(σ⃗−j , σ

′
j)) ⊆ Punj , for every j ∈ L and σ′j of j

125

ENASH complexity: Proof outline – Part 2

• Part 2: NE characterisation using parity games
From deterministic parity automata on infinite words to the
construction of a multi-player parity game
Building punishment regions in a collection of parity games:
For each L ⊆ N, compute M ′′

L from M ′ of G′, a game G′′
L .

Theorem
For all states s in M ′, we have s ∈ Punj(G′) iff i = N \ {j} has a
joint winning strategy against j in M ′′

L , for all j ∈ L in G′′
L.

Proof: Solution of |2N | − 1 parity games (in quasipolynomial5 time).

5Claude/Jain/Khoussainov/Li/Stephan, STOC’17.
126

E-NASH complexity: Proof outline – Part 3

From Part 2 we get M ′′
L and {α′

i}i∈N ; and φ from Part 1.

• Part 3: Definition of a path finding procedure over a product
of deterministic Streett automata on infinite words. Compute:

a Streett automaton recognising the paths of M ′′
L ,

a Streett automaton recognising all paths satisfying φ in M ′′
L ,

a Streett automaton for every parity function in {α′
i}i∈N\L.

Check:
L(SM′′

L
× Sφ ×

∏
i∈N\L

Sα′
i
) ̸= ∅

Streett automata are closed under conjunctions of Streett conditions;
moreover, φ can be added to M ′′

L as the goal of a dummy player.

127

E-NASH complexity: Proof outline – Part 3

Defn: Action-run η is punishing-secure for j iff states(η) ⊆ Punj .

Theorem
For a Parity game G′, there is a Nash Equilibrium strategy
profile σ⃗ ∈ NE(G′) such that π(σ⃗) |= φ iff there is an ultimately
periodic action-run η in G′′

L such that, for every player j ∈ L, the
run η is punishing-secure for j from state s0, where π is the
unique sequence of states generated by η from s0 using σ⃗.

Proof: Showing that L(SM′′
L
× Sφ ×∏

i∈N\L Sα′
i
) ̸= ∅ iff η is accepted.

Solving L(SM′′
L
× Sφ ×∏

i∈N\L Sα′
i
) ̸= ∅ can be done in

polynomial time because all automata have the same set of
states and may differ only on its Streett condition.6

6Perrin/Pin, Infinite Words, Pure and Applied Mathematics, 2004.
128

	Introduction
	Multi-Agent Systems Finally Happens!
	Verification and Model Checking
	Linear Temporal Logic
	Rational Verification
	Games

	Logic and Games
	Boolean Games
	Introducing Costs

	LTL and Games
	Iterated Boolean Games

	Reactive Modules Games
	Rational Verification in RMGs
	EVE
	Complexity Proof

