
Rational Verification

in Multi-Agent Systems

Muhammad Najib

Linacre College

University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy

September 2019

Declaration

I declare that the work presented in this thesis is my own except where

explicitly stated otherwise in the text, and that no portion of the work

referred to in this thesis has been submitted in support of an application

for another degree or qualification of this or any other university or other

institution of learning.

Acknowledgements

First, I thank my supervisors, Julian Gutierrez and Michael Wooldridge,

for all of the suggestions, help, encouragement, and, most importantly,

tremendous support; I could not ask for better supervisors.

Second, thanks to LPDP (Indonesia Endowment Fund for Education) for

financial support.

Third, I am immensely grateful to Giuseppe Perelli (for being such an

awesome collaborator), Franco Raimondi (for the discussions on part of

this thesis); also to Marta Kwiatkowska, Alessio Lomuscio, and Luke Ong,

for agreeing to be the examiners of my reports and thesis.

Fourth, special thanks also go to those who have made the past four years

in Oxford to be such a wonderful experience, especially to (in no particular

order): Paul Harrenstein (for constant supply of coffee), Jiarui Gan (for

afternoon trips to Covered & Gloucester Green Market), Norbert Nthala

(for the walks through University Park and lunches at Linacre), and all

brilliant people I met in RACE project, room 017, and the Indonesian

community in Oxford.

Finally, I thank my family for always supporting my decisions.

Abstract

Rational verification problem is concerned with checking which temporal

logic properties will hold in a system composed of multiple agents which

are assumed to behave rationally and strategically in pursuit of individual

objectives. Unfortunately, the problem is generally hard from computa-

tional point of view, and for the purpose of practical implementations,

usually requires specialised techniques.

This thesis aims to develop algorithms and study computational com-

plexity results for rational verification in multi-agent systems. Firstly, a

practically amenable technique which relies on a reduction to the solu-

tion of a collection of parity games is proposed. The technique in this

thesis uses a model of strategies that is bisimulation invariant—that is,

in which individual strategies for system components are valid across all

bisimilar systems, and which satisfy the same temporal logic properties in

equilibrium. This approach has been implemented in the Equilibrium Ver-

ification Environment (EVE) system. Secondly, some cases in which the

problem of rational verification is computationally tractable are investi-

gated. In particular, it is shown that the complexity of rational verification

can be reduced from 2EXPTIME-complete to fixed-parameter tractable.

Furthermore, improved complexity results when considering quantitative

goals, namely mean-payoff utility functions, are also studied. In doing so,

a concept called equilibrium design is proposed. This concept is concerned

with the design of incentives so that a desirable equilibrium is obtained.

Contents

List of Notations vi

1 Introduction 1

1.1 Motivation . 1

1.2 Multi-agent Systems and Games . 3

1.3 Structure of the Thesis . 4

2 Background 6

2.1 Modal Logics for Multi-agent Systems 6

2.2 Temporal Specification and Verification of Systems 8

2.2.1 Linear Temporal Logic . 9

2.2.2 Computation Tree Logic . 11

2.2.3 LTL vs CTL . 13

2.2.4 Temporal Logic Model Checking 14

2.3 Strategic Ability of Agents . 22

2.3.1 Strategic Behaviour of Players 23

2.3.2 Strategies in Concurrent Games 23

2.4 Logics for Strategies . 25

2.4.1 Alternating-time Temporal Logic 25

2.4.2 Strategy Logic . 26

2.5 Verifying Strategies . 27

2.5.1 Model Checking ATL . 28

2.5.2 Model Checking SL . 29

2.6 Recent Developments of Model Checking Tools 31

2.6.1 PRISM-games . 32

2.6.2 MCK . 34

2.6.3 MCMAS . 37

2.6.4 PRALINE . 40

i

2.7 Rational Verification . 42

2.7.1 SRML . 42

2.7.2 LTL Reactive Modules Game 45

2.7.3 CTL Reactive Modules Games 46

2.8 Concurrent Multi-Player Games . 47

2.8.1 Equilibrium Checking . 50

2.8.2 A Prototype Equilibrium Checking Tool 51

3 Rational Verification with MCMAS 54

3.1 Interpreted Systems . 54

3.2 Interpreted System Programming Language 56

3.3 Rational Verification with MCMAS 62

3.4 Translating SRML to ISPL . 62

3.4.1 States, Actions, and Variables in ISPL 62

3.4.2 Simulating Public Variables in ISPL 63

3.4.3 Initial States in ISPL . 64

3.4.4 Protocols in ISPL . 65

3.5 Solving Rational Verification Problems with MCMAS 68

3.6 Summary . 69

4 Parity Games for Rational Verification and Synthesis 71

4.1 Reasoning with Parity Games . 71

4.2 LTL Games to Parity Games . 73

4.3 Nash Equilibria Characterisation . 75

4.4 Finding Nash Equilibria . 81

4.5 Synthesis and Verification . 82

4.6 The Role of Bisimilarity . 84

4.7 Summary . 86

5 Some Tractable Cases of Rational Verification 87

5.1 Preliminaries . 87

5.2 Decision Problems . 88

5.3 Games of General Reactivity of Rank 1 89

5.4 Mean-Payoff Games . 93

5.5 Summary . 97

ii

6 Equilibrium Design 99

6.1 From Mechanism Design to Equilibrium Design 99

6.2 Equilibrium Design: Weak Implementation 101

6.3 Equilibrium Design: Strong Implementation 107

6.4 Optimality and Uniqueness of Solutions 113

6.4.1 Optimality and Uniqueness in the Weak Domain 113

6.4.2 Optimality and Uniqueness in the Strong Domain 117

6.5 Summary . 119

7 Implementation & Evaluation 121

7.1 Description . 121

7.2 Features & Usage . 122

7.3 Case Studies . 123

7.3.1 Gossip Protocol . 123

7.3.2 Replica Control . 125

7.4 Evaluation . 126

7.4.1 Experiment I . 126

7.4.2 Experiment II . 127

7.4.3 Experiment III . 129

8 Conclusions 133

8.1 Contributions . 133

8.2 Discussion . 134

8.3 Future Work . 138

Bibliography 140

iii

List of Figures

2.1 Graphical representation of Example 1. 7

2.2 Examples for Xϕ and ϕUψ. 10

2.3 Examples for EXϕ, EGϕ and E(ϕUψ). 13

2.4 Example model for AGEFp . 14

2.5 Example model for FGp . 14

2.6 Basic structure of model checking. 15

2.7 NBA for GFp . 15

2.8 Parse tree constructed from formula ϕ̂. 18

2.9 Example of an SMG described in PRISM-games modelling language. 33

2.10 PRISM-games verification output of property ϕ. 33

2.11 The illustration of Example 3. 35

2.12 MCK input for Example 3. 36

2.13 MCK output for Example 3. 37

2.14 Example of an agent in ISPL . 38

2.15 Evaluation of atomic variables . 38

2.16 Initial states and a formula to be verified 39

2.17 The structure of Example 4. 40

2.18 Part of the code to model Example 5 41

2.19 The structure of Example 5. 41

3.1 ISPL reserved keywords . 60

3.2 General structure of ISPL code . 61

3.3 The general flow of the approach. 62

4.1 Sequentialisation of a game. 77

4.2 Representation of the strategy σi. 79

7.1 High-level workflow of EVE. 122

7.2 Gossip framework structure. 124

7.3 SRML code modelling RM1. 124

iv

7.4 Gifford’s protocol modelled as a game. 125

7.5 Example of a 4× 4 grid world. 130

7.6 Example of a 4× 4 grid world without “safe” Nash equilibria. 130

7.7 A 4× 4 grid world with safe Nash equilibrium. 130

7.8 Plots from Table 7.5 . 132

v

List of Notations

2S where S is a set, denotes the powerset of S
S × S ′ cross product of the set S and S ′

|= semantic satisfaction relation
Sub(ϕ) subformula set of formula ϕ
Sat(ϕ) the set of states satisfying ϕ
S−A the set S \ A
π, π(~σ) a path, the unique path induced by ~σ
Inf(π) the set of states occuring infinitely often in the path

π
W , L the set of winners and losers in a game
σi strategy for player i
~σ strategy profile (σ1, . . . , σn) for the set of players N
�i preference relation over outcomes for player i
(~σ−i, σ′i) the strategy profile where the strategy of player i

in ~σ is replaced by σ′i
NE(G) the set of Nash equilibria in game G
Puni(G) the set of states in G from which player i can be

punished
puni(s) the punishment value for player i in s
Wini(G) winning region of player i ini G
η an action profile run
mp(r) mean-payoff value of r ∈ Rω

λ labelling function
α priority function for parity condition
A,S deterministic parity & Streett automaton
w weight function
κ,K, β subsidy scheme, set of subsidy schemes, budget

vi

Chapter 1

Introduction

Many software systems and applications can naturally be understood as collections

of interacting (semi-)autonomous agents. This has given rise to the paradigm of

multi-agent systems [Fagin et al., 1995, Weiß, 1999, Wooldridge, 2002, Shoham and

Leyton-Brown, 2008]. The field of multi-agent systems is largely concerned with the

theory and practice of systems composed of multiple interacting software components

(agents), which are assumed to be acting autonomously in pursuit of delegated goals

or preferences. The aim of this thesis is to develop practical algorithms and study

computational complexity results for rational verification in multi-agent systems.

This chapter discusses the motivations for developing techniques that can solve

the verification problem for multi-agent systems. The relation between multi-agent

systems and concurrent games is then presented. Finally, the main contributions and

the structure of the remainder of the thesis are outlined.

1.1 Motivation

This section describes a high-level motivation for the research presented in this thesis.

More specifically, this section presents two relevant issues underlying the motivation

of this thesis: computer bugs and artificial intelligence safety.

Computer Bugs. Computer systems play an important role in our lives and it is

not difficult to see that this role will become more significant in the future. It is

inevitable that these systems are getting more complex and integrated to our daily

life via mobile phones, portable computers, internet, and various kinds of embedded

systems. But as our dependency grows, we are more exposed to the risk of malfunc-

tioning systems. One of the “canonical” examples of this risk is the launch of the

Ariane-5 rocket on 4th June 1996 [ari, 1996]. The rocket exploded just 36 seconds

1

after take-off due to a software error in converting different data-types. This “simple”

bug costed the European Space Agency more than $500 million. Indeed, there are

other well-known examples [lis, 2016] of software bugs that not only costed money,

but sadly, also lives.

Clearly, in the setting where failure is unacceptable, the need for reliable systems

is crucial. During the last two decades, research in formal verification has led to

the emergence of techniques for detecting defects early in the development stage of

systems. Model checking is one of the most successful approaches to formal verifica-

tion, in which a system is represented as a formal model such that its behaviour is

described in a mathematically precise and unambiguous manner. The designer then

can specify a property using a temporal logic formula and automatically check with a

model checker whether it is reflected in the system behaviour. The usage of temporal

logic has a rather nice advantage, since one can specify a property such as “the system

will never give a wrong response” or “every request will eventually be served”1 in an

intuitive and natural way.

Artificial Intelligence and Safety. The recent revival and rapid progress of ar-

tificial intelligence (AI) has sparked some concern regarding its (possibly dangerous)

consequence to humanity. A complex system composed of many (intelligent) com-

ponents may appear not only as a reactive concurrent system, but to some extent,

a “black box” to humans of which behaviour is difficult to predict. A relatively re-

cent example of this problem happened on 6th May 2010 of what is known as the

“2010 Flash Crash” [Kirilenko et al., 2017] where stock indexes in the United States

collapsed and rebounded in a span of 36 minutes. High-frequency traders use highly

sophisticated algorithms for stock transactions at high volumes and speeds, and this

contributed to market volatility in the Flash Crash. This event suggested that we

need new tools for analysing and verifying a system composed of multiple interacting

autonomous, intelligent, and self-interested agents, to avoid potential undesireable

behaviour. It is even more relevant when the system in consideration is used in

safety-critical situations. The Future of Life Institute (FLI) listed the problems of

verification and validation as two of the research priorities in AI [Russell et al., 2016].

Beyond Classical Model Checking. The most successful approach to prove the

correctness of some system with respect to temporal logic specifications is model

1In reactive concurrent systems, these properties are commonly known, respectively, as safety
and liveness.

2

checking [Clarke et al., 2002]. The basic idea of model checking is to represent the

behaviour of a finite state program using a Kripke structure or transition system.

However, in the context of multi-agent systems, the approach of determining cor-

rectness using classical model checking is not appropriate [Wooldridge et al., 2016].

The classical model checking approach is missing an important ingredient of such sys-

tems: agents may be assumed to pursue their preferences rationally and strategically.

Thus, some runs of the system that in principle might be possible, in practice, will

never arise from rational choices by agents within the system. Thus, the question

that would be more appropriate to check for the correctness of a multi-agent system

against a proprety ϕ is as follows: “would ϕ be satisfied in some run that would be

sustained by a Nash equilibrium collection of choices by agents in the system?” This

problem is called equilibrium checking, and the general paradigm is known as rational

verification [Wooldridge et al., 2016].

1.2 Multi-agent Systems and Games

Concurrent and multi-agent systems can be naturally understood and modelled as

multi-player games [Shoham and Leyton-Brown, 2008, Gutierrez et al., 2017b]. In

this framework, concurrent/multi-agent systems correspond to games, system compo-

nents (agents) correspond to players, computation runs of the system correspond to

plays of the game, and individual component behaviours correspond to player strate-

gies, which define how players make choices in the system over time. Game theory

provides a number of solution concepts through which to analyse such systems, of

which Nash equilibrium [Osborne and Rubinstein, 1994] stands out as the most fun-

damental and important in noncooperative settings. A profile of strategies, one for

each player in a game, is said to be a Nash equilibrium if no player could benefit

by unilaterally changing its strategy assuming the other players’ strategies remain

unchanged. Previous work on the game theoretic analysis of concurrent/multi-agent

systems has taken Nash equilibrium, and refinements of it, as the central solution con-

cept. Our main interest is the development of the theory and tools for the automated

game theoretic analysis of concurrent/multi-agent systems, and in particular, the

analysis of temporal logic properties that will hold in a system under the assumption

that players choose strategies which form a Nash equilibrium2.

2In this work we focus on Nash equilibrium; however, a similar methodology may be applied
using refinements of Nash equilibrium and other solution concepts.

3

At this point, it is useful to state the assumptions that are used for the rest of

this thesis. Some of the assumptions are very natural and, indeed, we put forward

some argument why it is the case. Otherwise, they are placed out of necessity—

either there is some fundamental restriction, or simply because it is aimed as an early

approximation for further research.

Firstly, we assume that the players are playing pure strategies, and as such, the

solution concept used is pure Nash equilibrium. This is because in mixed strategies,

the existence of (mixed) Nash equilibrium is guaranteed [Nash, 1951], which makes

some problem considered in this thesis become trivial.

Secondly, we assume that the games are in complete information and perfect

recall setting. Clearly, this is ultimately too strong an assumption in general setting,

but it will suffice as a first approximation for further research3. Nevertheless, there

are some classes of multi-agent systems in which complete information is relevant,

such as in some non-antagonistic (non-zero-sum) environment wherein a centralised

coordination is not feasible. In such a system, agents are not gaining (significant)

advantage by keeping their strategies and goals private. To see this, consider a system

populated with autonomous car agents. If we model the interaction between the

agents (autonomous cars), it is not appropriate to model it as a zero-sum game,

since, despite the fact that the goal (e.g., destination) of each agent is most likely

unique, an agent will not be better off by preventing other agents to reach their

destinations. Indeed, in some papers such as [Fisac et al., 2019, Stefansson et al.,

2019], the authors consider some autonomous car systems in which the setup is of

(some type of) complete information.

Thirdly, we implicitly assume that the strategies have finite memory. Although,

it is important to point out that we impose no bound on memory size. We argue that

this is a natural assumption, since in practice, any implementation of some agent will

always have this restriction (e.g., RAM size).

1.3 Structure of the Thesis

This thesis presents the development of algorithmic techniques and the study of com-

putational complexity results for rational verification in multi-agent systems. The

thesis is structured as follows:

3Weakening this assumption may make some decision problems become undecidable in general
[Gutierrez et al., 2018b, Dima and Tiplea, 2011, Berthon et al., 2017].

4

• Chapter 2 summarises some backgorund material on modal logics, temporal

logics, game theoretical representations of multi-agent systems, formal verifica-

tion via model checking, and recent developments of model checking tools for

multi-agent systems. The material in this chapter enables the introduction of

some technical background for the next chapter which presents an approach to

rational verification.

• Chapter 3 presents an approach to solve rational verification problems using

MCMAS. The results in this chapter are later used in performance evaluation

for the proposed approach in this thesis.

• Chapter 4 presents the main approach to solve rational verification problems.

The algorithmic techniques presented in this chapter are the underlying foun-

dations for the implementation/tool: “Equilibrium Verification Environment”

(EVE).

• Chapter 5 studies some cases in which rational verification problems are (rel-

atively) computationally tractable. This chapter also introduces games with

quantitative goals (mean-payoffs), extending the previously qualitative objec-

tives (LTL formulae).

• Chapter 6 introduces the concept of equilibrium design for multi-agent systems.

It also studies the computational complexity of the proposed problems.

• Chapter 7 presents the implementation of the equilibrium checker EVE, analysis

of various applications of EVE to some protocols and examples from the litera-

tures, and reports its performance in comparison with two other tools: MCMAS

and PRALINE.

• Chapter 8 discusses the contribution of the thesis, evaluation results of the

proposed approach, and outlines possible extensions of this work.

5

Chapter 2

Background

This chapter presents some fundamental concepts on which verification tools are built,

especially the frameworks that enable the development of different techniques used

in the tools. More specifically, this chapter discusses the role of different logics in

providing conceptual structures for modelling and reasoning about systems.

Formal logic has been used widely in philosophy and computer science as a frame-

work for reasoning about systems. It provides a way to express and analyse the

properties of systems in a formal and rigorous fashion. Sometimes, it even allows us

to build a powerful machinery to carry out the analysis automatically, which is the

foundation of all verification tools. Readers’ familiarity with (classical) propositional

logic is assumed, thus this chapter starts from modal logic and proceeds to the more

recent formalisms. Later in this chapter, the argument of how game theory fits as an

appropriate tool for reasoning about systems with multiple agents is also presented.

2.1 Modal Logics for Multi-agent Systems

C. I. Lewis founded modern modal logic through his works in the beginning of 19th

century [Lewis, 1918] and his book [Lewis and Langford, 1932] (co-authored with C.

H. Langford). Modal logic extends classical propositional logic with two operators

expressing modality: 2 (necessity) and 3 (possibility). Formula 2ϕ says that ϕ is

necessarily true and similarly, 3ϕ says that ϕ is possibly true. The current standard

interpretation of modal logic is using Kripke semantics.

To describe Kripke semantics, we need the definition of Kripke models (due to

Saul Kripke) [Kripke, 1963]. A Kripke model is a kind of transition system modelled

as a graph whose nodes represent the states of the system and edges represent the

reachability relations. A Kripke model also has a labelling function that maps each

6

s1

q
s2

p, q

s3

p

s4

q

s5

s6

p

Figure 2.1: Graphical representation of Example 1.

node to a set of properties (usually, atomic propositions) that hold in that node.

Formally, a Kripke model is defined as follows.

Definition 1 (Kripke model). Let AP be a set of atomic propositions. Kripke models

are the models of modal logics which include the set of (possibly empty) worlds (or

states) St, a modal accessibility relation R ⊆ St× St, and a valuation of the atomic

propositions V : St→ 2AP.

Example 1. Let M = (St,R,V), where St = {s1, . . . , s6},
R = {(s1, s2), (s1, s3), (s2, s2), (s3, s2), (s4, s5), (s5, s4), (s5, s6)},
and V = {(s1, {q}), (s2, {p, q}), (s3, {p}), (s4, {q}), (s5, {}), (s6, {p})}. The graphical

representation is shown in Figure 2.1.

Now we can define the Kripke semantics of standard modal logic. Formally, it is

defined as follows [Kripke, 1963]. Let M = (St,R,V) be a Kripke model, p ∈ AP,

and s ∈ St. The truth value of formula ϕ at s in M is given by the semantic relation

|=, and defined by:

M, s |= p iff p ∈ V(s),

M, s |= ¬ϕ iff M, s 6|= ϕ

M, s |= ϕ ∨ ψ iff M, s |= ϕ or M, s |= ψ

M, s |= 2ϕ iff for all s′ ∈ St, if sRs′ then M, s′ |= ϕ

7

Observe that modal possibility and conjunction can be defined as combinations

of other operators: 3ϕ ≡ ¬2¬ϕ and ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ). We can also extend

modal logic with multiple modal operators: 2i and 3i, each of them interpreted over

a corresponding modal accessibility relation Ri ⊆ St× St. For further exposition to

modal logic, we refer to the work by Blackburn et.al. [Blackburn et al., 2001].

2.2 Temporal Specification and Verification of Sys-

tems

This section presents a brief overview of logics that capture the dynamics of systems,

namely linear temporal logic and branching time/computation tree logic, as well as

the basic notion of model checking and the underlying algorithms.

Temporal logic was first proposed by Arthur Prior [Prior, 1957, Prior, 1967, Prior,

1968] in an attempt to facilitate reasoning about statements such as “Liverpool Foot-

ball Club will win the Premier League this season”. This statement might be true if

evaluated in the first month of the Premier League season, but false if evaluated just

a month before the end of the season. To analyse such a sentence, Prior proposed the

idea of extending modal logic by adding four temporal modal operators:

Pϕ “It has previously been the case that ϕ is true”
Fϕ “It will eventually be the case that ϕ is true”
Hϕ “It has always been the case that ϕ is true”
Gϕ “It will always be the case that ϕ is true”

This later was extended by Hans Kamp in his doctoral dissertation [Kamp, 1968]

by introducing two binary temporal operators:

ϕSψ “ϕ has been true since a time when ψ was true”
ϕUψ “ϕ will be true until a time when ψ is true”

This proposed language clearly cannot be interpreted in the static, non-changing

models of classical logic. One simple approach in order to give the semantics of this

language is by interpreting time as a linear sequence of time-steps:

t0, t1, t2, . . .

A straightforward view is that the flow of time is regarded as the natural numbers N
in which each time-step corresponds to an element in N ordered by the “less than”

relation, “<”. Of course there are other posible interpretations of the flow of time

8

which will yield different properties, such as dense model1 and interval model2. In the

following section, we will discuss an extension of modal logic with respect to linear

sequences of time-steps called linear temporal logic (LTL).

2.2.1 Linear Temporal Logic

Prior’s proposal has led to the development of a formalism used in computer sci-

ence [Pnueli, 1977] namely linear temporal logic, in which the basic operators are: X

(“next”), F (“eventually”), and G (“always”), and U (“until”). It was developed as

a tool for formal verification of computer programs and based on a linear-time per-

spective which allows the specification of total relative orders of events. The intuitive

description of these standard temporal operators is as follows:

Xϕ “ϕ will be true in the next moment”
Fϕ “ϕ is true now or will eventually be true in the future”
Gϕ “ ϕ is true now and will always be true in the future”
ϕUψ “ψ will eventually be true in the future and ϕ will always be true

until the moment before ψ becomes true.”

These operators are useful for expressing properties of infinite computations in

reactive systems, namely safety, liveness, and fairness [Manna and Pnueli, 1992].

A safety property asserts that nothing bad will happen. It corresponds to main-

tenance of goals throughout the lifespan of the system. For example the statement

G¬crash says that the system will never crash.

A liveness property asserts that something good eventually happens. It corre-

sponds to achievements of goals, that is, the goals should be achieved at some point

in the future. For instance the statement Fterminate says that the system will even-

tually terminate in the future.

A fairness property corresponds to services that should be provided sufficiently

often. For instance, the statement G(request → Fdelivered) is translated as “it is

always the case that if one requests something then eventually it will be delivered”.

1The dense model put a one-to-one correspondence between time points and real numbers. This
interpretation arguably gives a powerful model to reason about the “real world” time, as well as comes
with an expensive computational cost. In fact, a variant of logic built on top of this interpretation
is highly undecidable [Alur and Henzinger, 1994].

2The interval model does not view time as points, but as intervals. This modelling approach
gives rise to more expressive kinds of logic. However, the intractability of the logics based on this
interpretation [Halpern et al., 1983, Halpern and Shoham, 1991, Venema, 1991, Chaochen et al.,
1993, Chaochen et al., 1991] contributes to their unpopularity in practical usage.

9

Xϕ

ϕ

ϕUψ

ϕ ϕ ψ

Figure 2.2: Examples for Xϕ and ϕUψ.

Formally, the syntax of LTL, where p ∈ AP , is formed according to the following

grammar:

ϕ ::= true | p | ϕ ∧ ϕ | ¬ϕ | Xϕ | ϕUϕ.

Other Boolean operators such as disjunction, implication, etc., are defined as usual

and can be represented by the operators ∧ and ¬. The until operator also allows us

to derive the temporal operators F and G as follows:

Fϕ ≡ true Uϕ Gϕ ≡ ¬F¬ϕ

Definition 2 (Kripke transition model). A Kripke transition model is a tuple M =

(St,→,V) where St is a non-empty set of states, →⊆ St× St is a transition relation,

and V : St→ 2AP is a valuation of atomic propositions.

Definition 3 (Path). A path π of M is an infinite sequence π = s0, s1, s2, . . . of

sequentially accessible states that can be generated by the transition relation of a

system M.

Semantically, LTL is defined by using infinite paths drawn from executions of a

Kripke transition model M . Let Paths(M) be the set of all infinite paths in M and

π ∈ Paths(M). Write π[j] to denote the jth state of π, π[...j] to denote the jth

prefix of π, π[j...] to denote the suffix of π after jth state, and π[j...k] to denote the

fragment between j and k on π. Let π ∈ Paths(M), the semantics of LTL over paths

is given as:

M,π |= p iff M,π[0] ∈ V(p)

M,π |= ¬ϕ iff M,π 6|= ϕ

M, π |= ϕ1 ∧ ϕ2 iff M,π |= ϕ1 and M,π |= ϕ2

M,π |= Xϕ iff M,π[1...] |= ϕ

M, π |= ϕ1 Uϕ2 iff M,π[j...] |= ϕ2 for some j ≥ 0, and M,π[i] |= ϕ1 for all 0 ≤ i < j

10

The next section presents another formalism that extends modal logic with respect

to time. In this formalism, time is modelled as a tree-like structure which resembles

non-determinism, i.e., there may be more than one path in the future, any one of

which might be realised.

2.2.2 Computation Tree Logic

The previous section presents LTL, a kind of temporal logic that allows us to reason

about single infinite paths of a system. This language is clearly not an appropriate

tool to reason about reactive systems where there may be several different possible

futures. Thus, each moment of time may split into several possible futures. To

capture this kind of behaviour, branching-time temporal logic was proposed [Clarke

and Emerson, 1981]. CTL* extends LTL with path quantifiers E (“some paths”) and

A (“all paths”) which express a quantification on alternative possible infinite paths.

Intuitively, given a property ϕ, the formula Eϕ means that there exists an infinite

path where ϕ is true, while Aϕ states that ϕ is true on all possible infinite paths.

Formulae in CTL* are classified into state and path formulae. State formulae are

interpreted in the states of a model, while path formulae are interpreted on the paths

of a model. The syntax of state formulae is given by the following grammar:

ϕ ::= true | p | ¬ϕ | ϕ ∧ ϕ | Eψ | Aψ

where p ∈ AP and ψ is a path formula. The path formulae are formed according to

the following grammar:

ψ ::= ϕ | ¬ψ | ψ ∧ ψ | Xψ | ψUψ

Let M = (St,→,V) be a Kripke transition model, s ∈ St, and p ∈ AP. The

semantics of CTL* state formulae are defined as follows:

M, s |= p iff s ∈ V(p)

M, s |= ¬ϕ iff M, s 6|= ϕ

M, s |= ϕ1 ∧ ϕ2 iff M, s |= ϕ1 and M, s |= ϕ2

M, s |= Eψ iff ∃π ∈ Paths(M), starting from s, for which we have M,π |= ψ

M, s |= Aψ iff ∀π ∈ Paths(M), starting from s, we have M,π |= ψ

11

The semantics of CTL* path formulae is given by:

M,π |= ϕ iff M,π[0] |= ϕ

M, π |= ¬ψ iff π 6|= ψ

M, π |= ψ1 ∧ ψ2 iff π |= ψ1 and π |= ψ2

M,π |= Xψ iff π[1...] |= ψ

M, π |= ψ1 Uψ2 iff π[j...] |= ψ2 for some j ≥ 0, and π[i] |= ψ1 for all 0 ≤ i < j

CTL is a subset of CTL* where every path quantifier must be immediately followed

by a temporal operator. It was originally proposed by Clarke and Emerson [Clarke

and Emerson, 1981] and used in slightly different form by Queille and Sifakis [Queille

and Sifakis, 1982]. CTL precedes CTL*; in fact CTL* was defined several years later in

[Emerson and Halpern, 1986]. The syntax of CTL is slightly different to the one used

in CTL* due to the restriction of coupling a path quantifier with a temporal operator.

Let p ∈ AP, the set of CTL state formulae in existential normal form (ENF) is given

by:

ϕ ::= true | p | ¬ϕ | ϕ ∧ ϕ | EXϕ | EGϕ | E(ϕUϕ).

Theorem 1. For each CTL formula ϕ, there exists an equivalent CTL formula ϕ̂ in

ENF.

Proof. The proof follows from the duality laws.

The semantics of CTL is given by:

M, s |= p iff s ∈ V(p)

M, s |= ¬ϕ iff M, s 6|= ϕ

M, s |= ϕ1 ∧ ϕ2 iff M, s |= ϕ1 and M, s |= ϕ2

M, s |= EXϕ iff ∃π ∈ Paths(M), starting from s, s.t. M,π[1] |= ϕ

M, s |= EGϕ iff ∃π ∈ Paths(M), starting from s, s.t M,π[j] |= ϕ for all j ≥ 0

M, s |= E(ϕ1 Uϕ2) iff ∃π ∈ Paths(M), starting from s, s.t M,π[j] |= ϕ2 for some j ≥ 0

and M,π[k] |= ϕ1 for all 0 ≤ k < j

12

ϕEXϕ

ϕ

ϕ
ϕ

EGϕ

ϕ

ϕ

ϕ ψ

E(ϕUψ)

Figure 2.3: Examples for EXϕ, EGϕ and E(ϕUψ).

This section presents CTL* and some of its fragments3. Observe that the seman-

tics of CTL, one of the branching-time temporal logic’s fragments, may be presented

entirely with respect to the states. Later, when model checking algorithms are pre-

sented, it will become apparent that this makes CTL model checking substantially

easier than CTL* model checking. One might ask about the expresiveness of LTL and

CTL, both of which are fragments of CTL*. In what follows, it is shown that they are

not comparable.

2.2.3 LTL vs CTL

Both LTL and CTL are subsets of CTL*, however, the logical expresiveness of LTL

and CTL cannot be compared [Lamport, 1980]. For instance, the ability of CTL to

explicitly put existential quantification over paths is more expressive when we want

to specify about the possibility of the existence of a specific path in a transition model

M , where M is best unfolded as a computation tree. Say we have a statement (in

CTL) “AGEFp”. Figure 2.4 satisfies the statement, however there is no LTL formula

exists that satisfies it because the horizontal sequence of states containing ¬p will

falsify the (LTL) formula.

3For a deeper exposition of temporal logic, one can refer to [Emerson, 1990, Ohrstrom and Hasle,
1995].

13

¬p ¬p ¬p ¬p ¬p

p p p p

Figure 2.4: Example model for AGEFp

p p p p p

¬p ¬p ¬p ¬p ¬p

p p p p

Figure 2.5: Example model for FGp

The other way round also applies, i.e., there are conditions that can be expressed

in LTL but not in CTL. For instance, consider the LTL formula FGp and Figure 2.5.

FGp holds in the model in Figure 2.5. However, any attempt to specify the same

condition in CTL fails. For instance, consider the formula AFAGp. This formula

clearly has a different meaning to the LTL formula FGp. Looking at this particular

example, it seems that LTL allows us a greater ability to describe individual paths.

2.2.4 Temporal Logic Model Checking

Model checking [Clarke et al., 2002] is arguably the best-known and most successful

approach for verifying the correctness of a system with respect to some temporal

logic formulae. Model checking starts with the fact that it is possible to capture the

behaviour of a finite state system P using a Kripke model or (labelled) transition

system M . This means that transition system can be interpreted as models for

temporal logic. Thus, given an LTL formula ϕ, checking whether P satisfies ϕ boils

down to checking whether ϕ is satisfied on all infinite paths in M . In essence, model

checking is a decision problem that takes as the inputs, model M representing a finite

state abstraction of a system and a temporal logic property ϕ, and output true if and

only if property ϕ is satisfied on M—that is, M is a model of ϕ.

14

A model M Temporal logic property ϕ

Model checker

“TRUE”

Property ϕ is true in M

“FALSE”

Property ϕ is not true in M

Figure 2.6: Basic structure of model checking; most of model checkers will provide a
counter example for a false instance.

q0 q1

p

¬p
p¬p

Figure 2.7: NBA for GFp; q1 is the accepting state.

The classical method for LTL model checking is based on automata theory4 and was

originally proposed by Vardi and Wolper [Vardi and Wolper, 1986]. It exploits the fact

that each LTL formula ϕ can be translated into a non-deterministic Büchi automaton

(NBA) [Büchi, 1962]. For instance, the LTL formula GFp can be translated into

the NBA shown in Figure 2.7. This construction then can be used to find a witness

or counterexample that falsifies ϕ in transition model M by constructing an NBA A
from ¬ϕ and combine it with M to form M ′. We then can disprove M |= ϕ by finding

a path π ∈ Paths(M ′) such that M ′, π |= ¬ϕ. If such a path is found, a prefix of π

is returned as counterexample. Otherwise, it is concluded that M |= ϕ.

In the following LTL model checking algorithm, instead of a Kripke transition

model, (labelled) Transition Systems (T S) are used to model the behaviour of a

system. One can, however, translate from one domain to another (e.g., T S to Kripke

transition model) as proposed by De Nicola and Vaandrager in their seminal work

[De Nicola and Vaandrager, 1990], extended by Reiners and Willemse in [Reniers and

Willemse, 2010].

Definition 4 (Transition System (T S)). A transition system is a tuple T S = (St,Ac,→
, I,AP, L) where St is a set of states, Ac is a set of actions, →⊆ St × Ac × St is a

4There exist newer approaches based on alternating automata, e.g., [Vardi, 1995], but popular
model checkers such as SPIN [Holzmann, 1997] are based on standard non-deterministic automata.

15

transition relation, I ⊆ St is a set of initial states, AP is a set of atomic propositions,

and L : St→ 2AP is a labeling function.

Definition 5 (Non-deterministic Büchi automaton). A non-deterministic Büchi au-

tomaton (NBA) A is a tuple A = (Q,Σ, δ, Q0, F) where Q is a finite set of states, Σ

is an alphabet, δ : Q × Σ → SQ is a transition function, Q0 ⊆ Q is a set of initial

states, and F ⊆ Q is a set of accepting states.

Definition 6 (Non-blocking NBA). Let A = (Q,Σ, δ, Q0, F) be an NBA. A is called

non-blocking if δ(q, A) 6= ∅ for all states q and all symbols A ∈ Σ.

Definition 7 (Product of T S and NBA5). Let T S = (St,Ac,→, I,AP, L) be a non-

terminating transition system, and A = (Q, 2AP, δ, Q0, F) a non-blocking NBA. Let

T S ⊗ A = (St×Q,Ac,→′, I ′,AP′, L′) where →′ is the minimum relation given by:

s
α−→ t ∧ q L(t)−−→ p

〈s, q〉 α−→′ 〈t, p〉

and where I ′ = {〈s0, q〉|s0 ∈ I∧∃q0 ∈ Q0. q0
L(s0)−−−→ q}, AP′ = Q, and L′ : St×Q→ 2Q

is defined by L′(〈s, q, 〉) = {q}.

Definition 8 (ω-Regular Expression). An ω-regular expression G over the alphabet

Σ has the form

G = E1.F
ω
1 + · · ·+ En.F

ω
n

where n ≥ 1 and E1, . . . ,En,F1, . . . ,Fn are regular expressions over Σ such that ε /∈
L(Fi), for all 1 ≤ i ≤ n.

Definition 9 (ω-Regular Language). A language L ⊆ Σω is called ω-regular if L =

Lω(G), where G is some ω-regular expression over Σ.

Let Lω(A) be the ω-regular language accepted by NBA A, and let Words(ϕ)

contain all infinite ω-regular words over 2AP that satisfy ϕ. The basic steps of the LTL

model checking algorithm are shown in Algorithm 1. The computational complexity

of LTL model checking is shown in the following theorem.

Theorem 2 ([Vardi and Wolper, 1986, Sistla and Clarke, 1985]). Model checking in

LTL is PSPACE-complete and can be performed in time O(|T S|) · 2O|ϕ|.

16

Algorithm 1 NBA-based LTL model checking

1: input: T S and LTL formula ϕ
2: output: if T S |= ϕ, “yes”, otherwise, “no” and counterexample
3: Build NBA A s.t. Lω(A) = Words(¬ϕ);
4: Build the product transition system T S ⊗ A;
5: if there exists π ∈ Paths(T S ⊗A) satisfying the accepting condition of A then
6: return “no” and counterexample (prefix of π);
7: else
8: return “yes”;
9: end if

The idea of model checking for CTL is rather different than LTL, since in CTL

we are concerned about the satisfaction of a formula ϕ in the states. That is, we

need to check whether the formula ϕ is valid in each initial state of the transition

system. The basic procedure of CTL model checking is relatively easy compared to

LTL. Let Sat(ϕ) be the set of all states satisfying ϕ and I the set of all initial states

of transition system T S, the procedure is given by the following two steps:

• compute Sat(ϕ) recursively, and

• check whether T S |= ϕ if and only if I ⊆ Sat(ϕ).

Notice that by computing Sat(ϕ) we solve a more general problem, that is, we check

not only the initial states, but any state in T S that satisfies ϕ.

Computing Sat(ϕ) recursively involves transforming ϕ into an equivalent ENF

formula ϕ̂ (where we only use operators ¬, ∧, EX, EU , EG)6 and then construct a

parse tree for formula ϕ̂, where the nodes of the parse tree contain the subformulae

of ϕ̂. We compute Sat(ψ), where ψ ∈ Sub(ϕ̂) and Sub(ϕ̂) is the set of subformulae

of ϕ̂, in a bottom-up manner.

Example 2. Consider the following formula:

ϕ̂ = EXp︸︷︷︸
ψ

∧E(qU EG¬r︸ ︷︷ ︸
ψ′′

)

︸ ︷︷ ︸
ψ′

.

The parse tree of ϕ̂ is shown in Figure 2.8. We can check the satisfaction of the leaves

as they correspond directly to the labelling function L. We can then move upwards

5We can also use the product of two Kripke transition models M1,M2, where M1 is the description
of the system, M2 is the description of properties to be checked. The product of these two models
is given by M1 ∩M2.

6Recall that the previous definition of the syntax of CTL formulae uses only these operators.

17

∧ Sat(ϕ̂)

EXSat(ψ) EU Sat(ψ′)

p

q EG Sat(ψ′′)

¬

r

Figure 2.8: Parse tree constructed from formula ϕ̂.

to the parents until we reach the root of the tree. This procedure is described in

Algorithm 2. Note that this algorithm works recursively on the structure of ϕ̂. For

formulae without temporal operators, Sat(ψ) can be computed directly or combined

in a certain way from sets of Sat(ψ). However, interesting cases arise when we deal

with formulae that involve temporal operators. We need to prove the termination

and correctness of proposed the algorithm.

Algorithm 2 Basic algorithm of CTL model checking

1: input: T S and CTL formula ϕ
2: output: if T S |= ϕ, “yes”, otherwise, “no” and counterexample
3: for all i = 1 to |ϕ̂| do
4: for all ψ ∈ Sub(ϕ̂) s.t. |ψ| = i do
5: compute Sat(ψ) from Sat(ψ′) for maximal proper ψ′ ∈ Sub(ψ);
6: end for
7: end for
8: return I ⊆ Sat(ϕ̂);

Without lost of generality, we may assume that the CTL formula to be verified is in

ENF (see Theorem 1). Let St′ be a set of states and preE(St′) the set of predecessors

of St′, that is preE(St′) = {s ∈ St|∃s′ ∈ St′, s → s′}. It is obvious that Sat(EXψ) =

preE(Sat(ψ)), and it follows that Sat(EGϕ) = Sat(ϕ) ∩ preE(Sat(EGϕ)). The last

statement seems to be circular, because we need to first compute Sat(EGϕ) in order

to obtain Sat(EGϕ). This is where fixpoints play an important role as later we see

in Theorem 3. But first, it is helpful to introduce some definitions.

Definition 10 (Monotone functions). Let St be a non-empty set of states and f :

2St → 2St a function on the power set of St. We say that f is monotone if and only

18

Algorithm 3 Computation of the satisfaction sets

1: input: T S and CTL formula ϕ
2: output: Sat(ϕ)
3: switch ϕ do
4: case p:
5: return L(p);

6: case ¬ψ:
7: return St\Sat(ψ);

8: case ψ1 ∧ ψ2:
9: return Sat(ψ1) ∩ Sat(ψ2);

10: case EXψ:
11: return preE(Sat(ψ));

12: case EGψ: (computing greatest fixpoint)
13: S1 := St; S2 := Sat(ψ);
14: while S1 * S2 do
15: S1 := S2;
16: S2 := preE(S1) ∩ S1;
17: end while
18: return S1;

19: case E(ψ1 Uψ2): (computing least fixpoint)
20: S1 := ∅; S2 := Sat(ψ1); S3 := Sat(ψ2);
21: while S3 * S1 do
22: S1 := S1 ∪ S3;
23: S3 := preE(S1) ∩ S2;
24: end while
25: return S1;

19

if, for all X, Y ∈ 2St, X ⊆ Y implies f(X) ⊆ f(Y).

Definition 11 (Fixpoint). Let X ∈ 2St and f : 2St → 2St. We say that X is a fixpoint

of f if and only if X = f(X).

Definition 12 (Iterated function). Let St be a non-empty set of states and f : 2St →
2St. The finite iteration of f on an input X is fn+1 = f(fn(X)).

With some definitions above, we can then state the following theorem.

Theorem 3 (Knaster-Tarski Theorem (special case) [Tarski, 1955]). Let St be a finite

set, |St| = n− 1, f : 2St → 2St is a monotone function. Then:

• fn(∅) is the least fixpoint of f , and

• fn(St) is the greatest fixpoint of f .

Proof. Since f is monotone, we have f 1(∅) ⊆ f 2(∅). Using mathematical induction,

we show that f i(∅) ⊆ f i+1(∅) for 0 ≤ i ≤ n. We claim that ∃i s.t. 0 ≤ i < n and

f i(∅) is a fixpoint of f . Suppose that it is not the case, then f 1(∅) must contain at

least one element since ∅ 6= f 1(∅). By the same argument, f 2(∅) must contain at

least two elements since f 1(∅) 6= f 2(∅). Continuing this, fn+1(∅) must contain at

least n+ 1 elements, which leads to a contradiction.

Now suppose that X is a fixpoint of f . We show that f i(∅) ⊆ X. Since ∅ ⊆ X,

X is a fixpoint of f , and f is monotone, we have f(∅) ⊆ f(X) = X. By induction,

∀i, i ≥ 0 we get f i(∅) ⊆ X. So, for i = n, we obtain fn(∅) ⊆ X. Therefore, fn(∅)

is the least fixpoint of f .

The proof for greatest fixpoint is analogous, we simply need to replace ⊆ with ⊇,

∅ with St, and “greater” with “less”.

Theorem 3 not only shows that such fixpoints exist, but also provides a technique

to compute them correctly. For instance, computing the least fixpoint of f , which

corresponds to computing Sat(E(ϕUψ)) (as we later see in Theorem 5), can be done

by repeatedly applying it to the empty set ∅ until the result does not change. The

same procedure is needed for computing the greatest fixpoint, which corresponds to

computing Sat(EGϕ) (Theorem 4), but here we start from the set of all states. The

procedure is guaranteed to terminate since we are working with a finite number of

states. Such procedure is included in Algorithm 3. Note that, we only need the cases

for EX, EG, and EU since we can always express any CTL formula in ENF (Theorem

1).

20

Theorem 4 ([Emerson and Clarke, 1980]). Let F (X) = Sat(ϕ) ∩ preE(X). Then F

is monotone and Sat(EGϕ) is the greatest fixpoint of F.

Proof. The proof consists of two parts:

• To show that F is monotone, let X, Y ⊆ St such that X ⊆ Y then show that

F (X) ⊆ F (Y). Take s ∈ X such that there exist some s′ ∈ X with s′ → s.

Certainly, we also have s′ → s where s ∈ Y , since X ⊆ Y . Thus, F is monotone.

• We have already seen that Sat(EGϕ) is a fixpoint of F. Now we need to show

that it is the greatest fixpoint. In order to do this, we need to show that for

any set X with F (X) = X, we have X ⊆ Sat(EGϕ). Let s0 ∈ X, we have

s0 ∈ X = F (X) = Sat(ϕ) ∩ preE(X), then s0 ∈ Sat(ϕ) and there exists a

state s1 ∈ X with s0 → s1. Since s1 ∈ X we may apply the previous argument

to obtain s1 ∈ Sat(ϕ) and s1 → s2 for some s2 ∈ X. By induction, we can

therefore construct an infinite path s0 → s1 → s2 → . . . such that si ∈ Sat(ϕ)

for all i ≥ 0. It follows that s0 ∈ Sat(EGϕ) and since this applies to any s ∈ X,

we have X ⊆ Sat(EGϕ).

Theorem 5 ([Emerson and Clarke, 1980]). Let G(X) = Sat(ψ)∪(Sat(ϕ)∩preE(X)).

Then G is monotone and Sat(E(ϕUψ)) is the least fixpoint of G.

Proof. The proof consists of two parts:

• To show that G is monotone, let X, Y ⊆ St such that X ⊆ Y then show that

G(X) ⊆ G(Y). The argument is essentially similar to the first part of proof for

Theorem 4, since G performs the intersection and union of preE with constant

sets Sat(ϕ) and Sat(ψ) respectively, and preE itself is monotone.

• Observe that E(ϕUψ) ≡ ψ ∨ (ϕ ∧ EXE(ϕUψ)), then we have

Sat(E(ϕUψ)) = Sat(ψ)∪(Sat(ϕ)∩preE(Sat(E(ϕUψ)))). That means Sat(E(ϕUψ))

is a fixpoint of G. Let Y = G(Y), we need to show that Sat(E(ϕUψ)) ⊆ Y .

To prove this, let s ∈ Sat(E(ϕUψ)). If s ∈ Sat(ψ) then s ∈ Y , otherwise if

s /∈ Sat(ψ), there exists a path π = s0, s1, s2, . . . starting in s = s0 such that

π |= (ϕUψ). Let n > 0, such that si |= ϕ, 0 ≤ i < n, and sn |= ψ. Then we

have:

– sn ∈ Sat(ψ) ⊆ Y ,

– sn−1 ∈ Y , since sn−1 ∈ preE(sn) and sn−1 ∈ Sat(ϕ),

21

– sn−2 ∈ Y , since sn−2 ∈ preE(sn−1) and sn−2 ∈ Sat(ϕ),
...

– s0 ∈ Y , since s0 ∈ preE(s1) and s0 ∈ Sat(ϕ)

Therefore it follows that s = s0 ∈ Y .

The theorems above ensure the correctness of Algorithm 2 and 3. For the com-

plexity of CTL model checking, we refer to the following theorem.

Theorem 6 ([Clarke et al., 1986, Arnold and Crubille, 1988]). The model checking

problem for CTL can be solved in time O(|T S| · |ϕ|).

This section presents some model checking techniques for LTL and CTL. These

approaches are arguably the most intuitive ones. There are, of course, other various

alternative approaches that provide more efficient techniques. For instance, some al-

ternatives approaches for LTL model checking can be found in [Gerth et al., 1995, Etes-

sami and Holzmann, 2000, Daniele et al., 1999, Gastin and Oddoux, 2001, Gian-

nakopoulou and Lerda, 2002, Fritz and Wilke, 2002]. For CTL model checking, the

most widely used technique is symbolic model checking using binary decision diagrams

[Burch et al., 1990, McMillan, 1993b].

At this point we have discussed about some (of the most common) techniques for

model checking LTL and CTL properties. These approaches provide some underpin-

ning techniques that will be used to solve some problems that emerge from reasoning

about strategies in multiplayer games. The importance of these approaches will be

made clear in the following section.

2.3 Strategic Ability of Agents

This section presents different logics that can be used for reasoning about strategies

of players/agents in game-like settings. Previous sections present LTL and CTL (and

CTL*) for reasoning about computations of a system which behaviour is completely

deterministic with respect to the state of the system. However, in the domain of

multi-agent systems, a system is viewed as a non-deterministic system, where agents

in the system have different choices available to them. More importantly, agents are

assumed to act strategically and rationally in order to satisfy their goals or preferences.

Thus, it is important to know which agent (or set of agents) can make the system

behave in a particular way.

22

2.3.1 Strategic Behaviour of Players

Game theory is a field in mathematical economics that is used to study strategic

interactions between self-interested entities [Maschler et al., 2013]. It is argued in

[Nisan et al., 2007, Shoham and Leyton-Brown, 2008] that game theory provides an

appropriate underlying concept and analytical framework for strategic reasoning of

players in multi-agent systems.

Generally, the models of games used in game theory can be divided into two

categories: cooperative and non-cooperative. The two categories differ in how they

define interaction and interdependence among players. In cooperative game theory,

the outcomes of the game come from the possible joint actions of sets of players. In

non-cooperative game theory, players decide their actions independently and these

actions may affect the outcomes directly.

Definition 13 (Strategic game form). A strategic game form is a tuple

Γ = (N, {Ac1, . . . ,Acn},Ω, o), where N = {1, . . . , n} is a finite set of agents or players,

Aci is a set of actions (or choices) for player i ∈ N, Ω = {ω1, . . . , ωn} is a set of

outcomes, and o : Ac1 × · · · × Acn → Ω is an outcome function.

Agents are assumed to act strategically and rationally in order to satisfy their

goals, therefore it is natural to assume that agents have preferences over the outcomes

of the game. To express the preferences, each agent i is associated with a utility

function ui : Ω → R assigning every outcome to a real number. The larger the

number means the better the outcome from an agent i ’s perspective. We can then

define a preference relation �i over outcomes for each player i as follows:

ω �i ω′ ⇐⇒ ui(ω) ≤ ui(ω
′).

This definition implies that the relation is complete, reflexive, and transitive.

2.3.2 Strategies in Concurrent Games

In the real world, agents interactions often happen in a repeated setting, where a

base game G is played a number of times and the payoffs are totalled. This type of

setting is usually called iterated game or repeated game. Concurrent game structures

allow multi-player games to be played repeatedly with different strategies at different

stages. The outcome of every round affects the strategies to be played in the next

round.

23

A concurrent game structure allows us to model interactions of the players con-

currently instead of sequentially (such as in an extensive-form game [Kuhn, 2003]).

A state transition in a concurrent game structure is the result of choices made (simul-

taneously) by the players in the system. In this way, we can describe open systems

properly.

Definition 14 (Concurrent game structure (CGS)). A concurrent game structure

(CGS) is a tuple

M = (N, (Aci)i∈N, St, s0, tr, λ)

where N = {1, . . . , n} is a set of players, each Aci is a set of actions, St is a set of states,

with a designated initial state s0. With each player i ∈ N and each state s ∈ St, we

associate a non-empty set Aci(s) of available actions that, intuitively, i can perform

when in state s. We refer to a profile of actions ~a = (a1, . . . , an) ∈ ~Ac = Ac1×· · ·×Acn

as a direction. We also consider partial directions. A direction ~a is available in state

s if for all i we have ai ∈ Aci(s). Write ~Ac(s) for the set of available directions in

state s. For a given set of players A ⊆ N and an action profile ~a, we let ~aA and ~a−A

be two tuples of actions, respectively, one for each player in A and one for each player

in N \A. We also write ~ai for ~a{i} and ~a−i for ~aN\{i}. Furthermore, for two directions

~a and ~a′, we write (~aA,~a
′
−A) to denote the direction where the actions for players in

A are taken from ~a and the actions for players in N \A are taken from ~a′. Finally, tr

is a deterministic transition function, which associates a state s and every available

direction ~a in s a state s′ ∈ St, and λ : St → 2AP is a labelling function. Whenever

there is ~a such that tr(s,~a) = s′, we say that s′ is accessible from s. By πk we refer

to the (k+ 1)-th state in π and by π≤k to the (finite) prefix of π up to the (k+ 1)-th

element. An action profile run is an infinite sequence η = ~a0,~a1, . . . of action profiles.

Note that, since M is deterministic (i.e., the transition function tr is deterministic),

for a given state s0, an action profile run uniquely determines the path π in which,

for every k ∈ N, πk+1 = tr(πk,~ak).

The definition of path in CGS is similar to the one in temporal models. A finite

path is a finite sequence h = s0, s1, . . . , sn. A strategy of a player i in a CGS M is a

plan that tells what action should be taken by i in each possible situation. Strategies

may be classified into three kinds: memoryless, perfect recall, and intermediate types

between the former two.

Formally, a memoryless strategy can be represented by a function σi : St → Aci

such that σi(s) ∈ Aci(s). Informally, memoryless strategy is a model of strategy that

depends only on the current state of play. A perfect recall strategy is represented

24

by a function σi : St+ → Aci, where St+ is a finite sequence of states (i.e., a finite

path), such that σi(〈. . . , s〉) ∈ Aci(s). This means that an agent with a perfect recall

strategy acts based on the full history of a play, from the initial state until the current

state of the play. An exposition and definition of types of strategies that lie between

the previous two can be (among the others) found in [Agotnes and Walther, 2009]

and [Vester, 2013]. The former studies intermediate types of strategies for agents

with (bounded) finite memory, whereas the latter discusses finite memory strategies

both in bounded and unbounded settings.

2.4 Logics for Strategies

This section presents some formalisms that allow us to reason about strategies of

players. Specifically, this section presents two of the most influential logics for rea-

soning about strategies in multi-agent settings: Alternating-time Temporal Logic and

Strategy Logic.

2.4.1 Alternating-time Temporal Logic

Alternating-time Temporal Logic (ATL*) is one of the most important logics in which

one can reason about time and strategic abilities of players [Alur et al., 2002]. ATL*

is closely related to CTL*, in which path quantifiers are replaced with the strategic

quantifiers 〈〈A〉〉 in which A ⊆ N denotes a set of agents who act as a coalition, where

N is the set of all agents. A formula 〈〈A〉〉ϕ expresses that coalition A has a strategy

to ensure that the temporal property ϕ holds irrespective of how other players outside

of A proceed. The strategic quantifier 〈〈A〉〉 is basically a generalisation of branching-

time temporal logics described as follows:

• The universal path quantifier A correponds to 〈〈∅〉〉,

• The existential path quantifier E corresponds to 〈〈N〉〉,

where N denotes the set of all agents and ∅ is the empty set.

Formally, ATL* is defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉ψ,
ψ ::= ϕ | ¬ψ | ψ ∧ ψ | Xψ | ψUψ

where A ⊆ N and p ∈ AP.

25

Write out(s, σA) to denote the set of all paths π ∈ Stω that the players in A

enforce when they execute strategy σA from state s onward. Let Σ be the set of all

strategies, the semantics of ATL*, interpreted over a CGS M, is given by:

M, s |= p iff p ∈ λ(s)

M, s |= ¬ϕ iff M, s 6|= ϕ

M, s |= ϕ1 ∧ ϕ2 iff M, s |= ϕ1 andM, s |= ϕ2

M, s |= 〈〈A〉〉ψ iff there is a collective strategy σA ∈ Σ s.t. M, π |= ψ

for all π ∈ out(s, σA)

The semantics of path formulae is essentially the same as to the one of LTL:

M, π |= ϕ iff M, π[0] |= ϕ

M, π |= ¬ψ iff π 6|= ψ

M, π |= ψ1 ∧ ψ2 iff M, π |= ψ1 andM, π |= ψ2

M, π |= Xψ iff π[1...] |= ψ

M, π |= ψ1 Uψ2 iff π[j...] |= ψ2 for some j ≥ 0, and π[i...] |= ψ1 for all 0 ≤ i < j

ATL (sometimes called “vanilla” ATL) is a strict subset of ATL*. It is the alternating-

time extension of CTL (in the analogous way of ATL* to CTL*). A model checking

procedure of ATL properties is discussed in a later section.

2.4.2 Strategy Logic

Strategy Logic (SL) was first introduced by Chatterjee et al. in [Chatterjee et al.,

2010b] with the aim of developing a simple and natural way for reasoning explicitly

about strategies. However, it was defined and investigated only under the framework

of two-players games. Soon afterwards, Mogavero et al. [Mogavero et al., 2010]

introduced a more general framework of SL to reason about multi-player concurrent

games.

SL quantifies over strategies explicitly in formulae instead of over agents. This

allows us to express properties such as “agent i and j share the same strategy”. It

is even strong enough to express game-theoretic concepts like Nash equilibrium. SL

extends the syntax of LTL with three new operators: an existential strategy quantifier

〈〈x〉〉, a universal strategy quantifier [[x]], and an agent binding operator (i, x), where

26

i is an agent and x a strategy variable. Intuitively, these new operators can be read

as “there exists a strategy x”, “for all strategies x”, and “bind agent i to the strategy

associated with variable x”, respectively.

SL formulae are built inductively from a set of Boolean variables Φ, strategy

variables Var, and a set of agents N, by using the following BNF:

ϕ ::= p | ¬ϕ |ϕ ∧ ϕ |Xϕ |Fϕ |Gϕ |ϕUϕ | 〈〈x〉〉ϕ | [[x]]ϕ | (i, x)ϕ

where p ∈ Φ, x ∈ V ar, and i ∈ N.

Write free(ϕ) to denote the set of free agents and variables of a formula ϕ. For

instance, let ϕ = 〈〈y〉〉(α, x)(β, y)Gp be a formula on agents N = {α, β, γ}. Since agent

γ is not used in the formula and x is not quantified, then we have free(ϕ) = {γ, x}.
Let V ar be a fixed set of variables. An assignment χ : N ∪ V ar → Σ is a partial

function mapping every agent and variable to a strategy. Write dom(χ) for the subset

of N∪V ar, then an assignment χ is complete if and only if N ⊆ dom(χ). SL formulae

are evaluated at a state s of a CGS M, under an assignment χ. Write M, χ, s |= ϕ

to indicate that formula ϕ holds at s under assignment χ.

Let s be a state of M, χ be an assignment, x ∈ V ar, and ϕ ∈ SL, such that

free(ϕ)\{x} ⊆ dom(χ). The semantics of the SL formulae involving boolean and

LTL temporal operators is defined as usual (see Section 2.2.1). The semantics of SL

that involves quantifications and bindings is defined as follows:

M, χ, s |= 〈〈x〉〉ϕ iff ∃σ ∈ Σ such that M, χ[x 7→ σ], s |= ϕ

M, χ, s |= [[x]]ϕ iff ∀σ ∈ Σ it holds that M, χ[x 7→ σ], s |= ϕ

Additionally, if free(ϕ) ∪ {x} ⊆ dom(χ) ∪ {a} where i ∈ N, then:

M, χ, s |= (i, x)ϕ iff M, χ[i 7→ χ(x)], s |= ϕ

2.5 Verifying Strategies

This section presents a model checking procedure for (vanilla) ATL and SL. ATL is a

subset of ATL* in which every occurence of the cooperation modality is coupled with

a temporal operator.

27

2.5.1 Model Checking ATL

The basic idea of ATL model checking is to verify an ATL formula 〈〈A〉〉ϕ by con-

structing a winning strategy for coalition A, that is, a strategy that guarantees the

satisfaction of ϕ irrespective of what other agents outside coalition A do. This is

carried out by using similar algorithms for CTL model checking where we start from

set of all states for G and empty set for U . Thus, model checking an ATL property

has similar complexity to model checking a CTL property, as shown in the following

theorem.

Algorithm 4 Computation of the satisfaction sets

1: function atlmc(M, ϕ)
2: switch ϕ do
3: case p:
4: return λ(p);

5: case ¬ψ:
6: return St\atlmc(M, ψ);

7: case ψ1 ∧ ψ2:
8: return atlmc(M, ψ1) ∩ atlmc(M, ψ2);

9: case 〈〈A〉〉Xψ:
10: return pre(M, A,atlmc(M, ψ));

11: case 〈〈A〉〉Gψ: (computing greatest fixpoint)
12: S1 := St; S2 := atlmc(M, ψ); S3 := S2;
13: while S1 * S2 do
14: S1 := S2;
15: S2 := pre(M, A, S1) ∩ S3;
16: end while
17: return S1;

18: case 〈〈A〉〉(ψ1 Uψ2): (computing least fixpoint)
19: S1 := ∅; S2 := atlmc(M, ψ1); S3 := atlmc(M, ψ2);
20: while S3 * S1 do
21: S1 := S1 ∪ S3;
22: S3 := pre(M, A, S1) ∩ S2;
23: end while
24: return S1;

25: end function
26:

27: function pre(M, A, S)
28: return {s | ∃aA∀aN\A, tr(s, (aA, aN\A)) ∈ S} where aA is collective action of coalition

A;
29: end function

28

Theorem 7 ([Alur et al., 2002]). Model checking ATL is P-complete, and can be

performed in time O(|M| · |ϕ|), where |M| is the number of transitions in M, and

|ϕ| is the number of subformulae in ϕ.

The model checking procedure, essentially consists in, finding the greatest and

least fixpoint for ATL formula with the temporal operators G and U , respectively.

The fixpoint characterisation of ATL operators is given by:

〈〈A〉〉Gϕ ⇐⇒ ϕ ∧ 〈〈A〉〉X〈〈A〉〉Gϕ

〈〈A〉〉(ϕ1 Uϕ2) ⇐⇒ ϕ2 ∨ (ϕ1 ∧ 〈〈A〉〉X〈〈A〉〉(ϕ1 Uϕ2))

Note that the fixpoint characterisation for ATL is similar to CTL, thus it is a straight-

forward adaptation of the CTL fixpoint algorithms presented in Section 2.2.4. How-

ever, there are some important differences compared to the previous implementation,

especially in function PRE where transition function tr of M that respects the col-

lective actions is used as a criterion for states reachability. The complete procedure

for model checking an ATL formula is shown in Algorithm 4. Note that formulae with

operators other than X, G, and U can be derived from these.

2.5.2 Model Checking SL

The model checking procedure for SL extends the ones used for temporal logic in two

aspects. First, it takes as input a formula to be checked along with bindings, which

assign agents to some variables. Second, it returns not only sets of states, but sets

of pairs 〈s, χ〉 consisting of state s and an assignment of variables to strategies χ. A

pair 〈s, χ〉 ∈ Ext is called an extended state, which can be read as: with the strategy

assignment χ, the formula holds at state s.

Given an SL formula ϕ and a binding [∈ Bnd, where Bnd : N→ V ar, the model

checking algorithm Sat : SL × Bnd → 2Ext, returning a set of extended states, is

shown in Algorithm 5, where i ∈ N is an agent, A ⊆ N a set of agents, x ∈ V ar

a variable, h(p) the set of global states where p is true, and pre(S, [) is the set of

extended states that temporally precede S under binding [.

The complexity of model checking for an SL formula ϕ (under perfect recall and

complete information) with k number of alternation is k -EXPSPACE-hard and (k+1)-

EXPTIME [Mogavero et al., 2010]. However, it is PTIME with respect to the size

of the model [Mogavero et al., 2010]. This means that, given the computational

power of today’s computers, model checking a simple SL formula in a large model is

feasible, but model checking a complex SL formula in a relatively small model would

29

Algorithm 5 Computation of the satisfaction sets (SL)

1: function slmc(M, ϕ, b)
2: switch ϕ do
3: case p:
4: return {〈s, χ〉|s ∈ h(p), χ ∈ Asg};
5: case ¬ψ:
6: return neg(slmc(M, ϕ, b));

7: case ψ1 ∧ ψ2:
8: return slmc(M, ψ1, b) ∩ slmc(M, ψ2, b);

9: case (i, x)ψ:
10: return slmc(M, ψ, b[i 7→ x]);

11: case 〈〈x〉〉ψ:
12: return {〈s, χ〉|∃σ ∈ Σsharing(ψ,x).〈s, χ[x 7→ σ]〉 ∈ slmc(M, ψ, b)};
13: case Xψ:
14: return pre(slmc(M, ψ, b), b);

15: case (ψ1 Uψ2): (computing least fixpoint)
16: S1 := ∅; S2 := slmc(M, ψ1, b); S3 := slmc(M, ψ2, b);
17: while S3 * S1 do
18: S1 := S1 ∪ S3;
19: S3 := pre(S1, b) ∩ S2;
20: end while
21: return S1;

22: end function
23:

24: function neg(S)
25: return {〈s, χ〉 | ∀〈s, χ′〉 ∈ S,∃x ∈ dom(χ) ∩ dom(χ′),∃s′ ∈ St.

χ(x)(s′) 6= χ′(x)(s′)};
26: end function

30

be impractical. In response to this, five different syntactic fragments of SL have been

proposed [Mogavero et al., 2010, Mogavero et al., 2012]. To make it clearer, consider

the following Boolean-Goal Strategy Logic [Mogavero et al., 2014] formula:

ψ = [[x]]〈〈y〉〉︸ ︷︷ ︸
℘

(a, x)(b, y)︸ ︷︷ ︸
[1

Fp︸︷︷︸
ϕ1

∧ (a, y)(b, x)︸ ︷︷ ︸
[2

(Gq)︸ ︷︷ ︸
ϕ2

where ψ is an SL formula, ϕi and ϕ2 LTL formulae, ℘ a strategy quantification, and [

an agent binding prefix. The syntactic fragments of SL differ in which operators can

occur between ℘ and [ϕ. More specifically, the syntax of each fragment [Mogavero

et al., 2012, Mogavero et al., 2014] is as follows:

• Nested-Goal Strategy Logic (SL[NG]).

Syntax: ψ ::= ¬ψ |ψ ∧ ψ |Xψ |ψUψ | [ψ |ϕ

• Boolean-Goal Strategy Logic (SL[BG]).

Syntax: ψ ::= ¬ψ |ψ ∧ ψ | [ϕ

• Conjunctive-Goal Strategy Logic (SL[CG]).

Syntax: ψ ::= ψ ∧ ψ | [ϕ

• Disjunctive-Goal Strategy Logic (SL[DG]).

Syntax: ψ ::= ψ ∨ ψ | [ϕ

• One-Goal Strategy Logic (SL[1G]).

Syntax: ψ ::= [ϕ

where ψ is an SL formula, ϕ an LTL formula, ℘ a strategy quantification, and [an

agent binding prefix. Observe that SL[CG] and SL[DG] are essentially duals of each

other.

The model checking complexity for each fragment of SL is summarised in Table 2.1,

k is the maximum number of quantification alternation [Mogavero et al., 2014, Bouyer

et al., 2015b]. There is also a variant of SL called Strategy Logic with Knowledge

(SLK) [Cermák et al., 2014], which is defined on imperfect recall semantics with

incomplete information.

2.6 Recent Developments of Model Checking Tools

This section presents some multi-agent systems verification tools that are actively

being developed.

31

fragment model checking complexity

SL[NG]
k -EXPSPACE-hard (lower bound),

(k + 1)-EXPTIME (upper bound)

SL[BG] TOWER-complete

SL[CG] 2EXPTIME-complete

SL[DG] 2EXPTIME-complete

SL[1G] 2EXPTIME-complete

Table 2.1: Overview of complexity SL fragments with respect to the size of specifica-
tion.

2.6.1 PRISM-games

PRISM-games [Chen et al., 2013b, PRISM Web, 2019b] is an extension of PRISM

(Probabilistic Symbolic Model Checker) [Kwiatkowska et al., 2011, PRISM Web,

2019a] for modelling, verifying, and synthesising strategies in probabilistic systems

that incorporate competitive or collaborative behaviour. Systems are modelled as

stochastic multi-player games (SMGs) [Shapley, 1953]. PRISM-games uses a prob-

abilistic extension of the Reactive Modules Language (RML) [Alur and Henzinger,

1999] and an extension of ATL called rPATL [Chen et al., 2012]. rPATL combines the

coalition operator 〈〈A〉〉 of ATL, the probabilistic operator P∼λ from PCTL [Hansson

and Jonsson, 1994], and an operator Rr
∼x, which corresponds to the cumulative “re-

ward” that a player can achieve along a path of the game. Intuitively, the rewards

are represented by reward functions that map each possible path in the game to a

cumulative reward value (see [Chen et al., 2012, Chen et al., 2013a]).

The current release of PRISM-games is built upon the explicit model checker ver-

sion of PRISM which implements explicit-state data structures. However, it currently

only supports turn-based, perfect-information SMGs which nevertheless is sufficient

to model and analyse particular kinds of energy management and collective decision

making in autonomous systems [Chen et al., 2012].

Figure 2.9 shows a toy example7 of an SMG described in the PRISM modelling

language. Notice the keyword smg at the beginning of the code, which differentiates

from PRISM’s usual modelling of Markov decision processes (MDPs). This particular

SMG has two players: p1 and p2. The former controls asynchronous transitions from

7Taken from [PRISM Web, 2019c].

32

1 smg

2

3 player p1

4 host, [send1], [send2]

5 endplayer

6

7 player p2

8 client

9 endplayer

10

11 module host

12 h : [0..2] init 0;

13 [send1] h=0 -> (h’=1); // send message 1

14 [send2] h=0 -> (h’=2); // send message 2

15 [] c=0 -> (h’=0); // restart

16 endmodule

17

18 module client

19 c : [0..2] init 0;

20 [send1] c=0 -> 0.85 : (c’=1) + 0.15 : (c’=0); // receive message 1

21 [send2] c=0 -> 0.85 : (c’=2) + 0.15 : (c’=0); // receive message 2

22 [] c!=0 -> (c’=0); // request another message

23 [] c!=0 -> true; // wait

24 endmodule

Figure 2.9: Example of an SMG described in PRISM-games modelling language.

1 Model checking: <<p1>> P>=0.99 [F<=5 c=2]

2

3 Starting bounded probabilistic reachability...

4 Bounded probabilistic reachability (maxmin) took 5 iterations and 0.0

seconds.

5

6 Number of states satisfying <<p1>> P>=0.99 [F<=5 c=2]: 2

7

8 Property satisfied in 1 of 1 initial states.

9

10 Time for model checking: 0.0 seconds.

11

12 Result: true (property satisfied in the initial state)

Figure 2.10: PRISM-games verification output of property ϕ.

33

module host and synchronous transitions send1 and send2. The latter controls asyn-

chronous transitions from module client. Property ϕ = <<p1>> P>=0.99 [F<=5 c=2]

states that p1 has a strategy to ensure that the probability of reaching a state satis-

fying c=2 in 5 time-steps is at least 0.99 which PRISM-games verifies that it is indeed

true as shown in the output log in Figure 2.10.

2.6.2 MCK

MCK is a tool for model-checking the logic of knowledge of multi-agent systems

developed at the University of New South Wales [Gammie and van der Meyden,

2004, MCK Web, 2019a]. MCK supports explicit-state model checking (as described in

Section 2.2.4), symbolic model checking via binary decision diagrams (BDD) [McMil-

lan, 1993a], and bounded model checking (BMC) [Biere et al., 2003].

MCK models the environment as a finite-state transition system where the tran-

sitions are labelled by agents’ actions. Let N = {1, . . . , n} be a set of agents, ACTi a

set of of actions associated with agent i. To model non-determinism, the environment

also has a set of action ACTe. A joint action ACT = ACTe ×ACT1 × · · · ×ACTn is

the product of environment’s and each agent’s actions.

Definition 15 (Interpreted environment). A finite interpreted environment for n

agents is a tuple E = (Se, Ie, Pe, τ, O1, . . . , On, Le) where the components are as fol-

lows:

• Se is a finite set of states of the environment.

• Ie ⊆ Se is the possible initial states of the environment.

• Pe : Se → P(ACTe) is a function protocol of the environment mapping states

to subset of ACTe.

• τ is a function mapping joint actions a ∈ ACT to transition function τ(a) :

Se → Se.

• Oi is the observation function of agent i, mapping the set of state Se to some

set O. That is, Oi(s) will be called the observation of agent i in state s ∈ Se.

• λe : Se → 2AP is an labelling function mapping each state to an assignment of

truth values for the atomic propositions AP .

34

0 1 2 3 4 5 6 7

goal region

Figure 2.11: The illustration of Example 3.

A path r in E is an infinite sequence r = s0, s1, . . . such that s0 ∈ Ie and for

all m ≥ 0 there exists a joint action a = 〈ae, a1, . . . , an〉 such that ae ∈ Pe(sm) and

sm+1 = τ(a)(sm). A point is a tuple (r,m) that identifies a particular instant of time

in r. MCK follows [Fagin et al., 1995] and defines a system to be a set R of runs

and an interpreted system a tuple I = (R, λ) consisting of a system R and labelling

function λ mapping the points of runs r ∈ R to assignments of atomic proposition

AP.

MCK supports several logics for specifying properties, namely LTL, CTL*, and the

µ-calculus, as well as incorporating some knowledge modalities such as Knows and

CK (common knowledge). To make the mechanism of MCK clearer consider Example

3 which is taken from [MCK Web, 2019b] (originally from [Brafman et al., 1997]).

Figure 2.12 shows the example described in MCK input language.

Example 3. This example is a summary of [Engelhardt et al., 2000] which was

originally introduced in [Brafman et al., 1997]. Consider a robot travelling along

an endless corridor, which is identified with natural numbers (see Figure 2.11). The

robot starts at 0 and has the goal of stopping in the goal region {2,3,4}. To determine

when to stop, the robot has a sensor between its front and rear axles. It is assumed

that the sensor is inaccurate with error of at most 1. The robot can only perform

the action “halt”, which results in instantaneous stopping. Unless it performs action

halt, the robot cannot control its movement for each time-step.

The solution of this problem is straightforward: we have to set the robot’s control

policy into: Do nothing while the sensor has a value of less than 3, and halt as

soon as it reads value 3 or more. The code in Figure 2.12 sets the arena to have 8

distinct locations8, hence type Pos={0..7}. Agent Robot has a non-deterministic

transition, at each time-step, it is either staying in the same position (Line 16) or

traveling one step forward (Line 21) while always generating sensor reading with error

bounds captured (non-deterministically) in Line 26-28. Line 32 rules out the traces

where the environment never tries to move the robot forward. Line 33 asserts the

8The choice of 8 is arbitrary, any number greater than 4 is sufficient.

35

1 type Pos = {0. .7}

2

3 incpos : Bool

4 position: Pos

5 sensor : Pos

6 halted : Bool

7

8 init_cond = incpos /\ position == 0 /\ sensor == 0 /\ neg halted

9

10 agent Robot "robot" (sensor)

11

12 transitions

13 begin

14 if neg halted /\ neg Robot.Halt >

15 begin

16 position := position;

17 incpos := False

18 end

19 [] neg halted /\ neg Robot.Halt >

20 begin

21 position := position + 1;

22 incpos := True

23 end

24 [] Robot.Halt > halted := True

25 fi;

26 if True > sensor := position 1

27 [] True > sensor := position

28 [] True > sensor := position + 1

29 fi

30 end

31

32 fairness = incpos \/ halted

33 spec obs = AG (Robot.test <=> Knows Robot position in {2..4})

34 protocol "robot" (sensor : observable Pos)

35 define test = sensor >= 3

36

37 begin

38 do neg test > skip

39 [] break > <<Halt>>

40 od

41 end

Figure 2.12: MCK input for Example 3.

36

1 Wed Sep 21 2016 13:00:16

2 /localhost/MCK/mck-Linux-1.1.0/examples/robot

3 spec_obs_ctl =

4 AG (Robot.test (Knows Robot (position in {2,3,4})))

5

6 >> Spec holds.

7 Timing (in seconds):

8 real 0.01

9 user 0.00

10 sys 0.00

Figure 2.13: MCK output for Example 3.

specification of the agent Robot, that is, it is always the case Robot.test is true if

and only if the Robot knows it is in between 2 to 4, where Robot.test is defined as

true when the reading of the sensor is greater or equal than 3. Indeed, MCK confirms

the specification holds as shown in Figure 2.13.

2.6.3 MCMAS

MCMAS [Lomuscio and Raimondi, 2006, MCMAS Web, 2019] adopts interpreted

systems [Fagin et al., 1995] as the formal language to represent systems comprised of

multiple entities. In MCMAS, interpreted systems are extended to incorporate game

theoretic notions such as those provided by ATL modalities [Lomuscio et al., 2017].

Although both MCK and MCMAS adapted the formalisation in [Fagin et al., 1995],

there are some subtle differences between the two adaptations. The approach used in

MCK is “top-down”, where local states (MCK uses observations) of agents are defined

by an observation function that maps the set of environment/global state Se to local

states/observations of the agents. On the other hand, MCMAS approach is “bottom-

up”, where the global state is defined as a tuple of the local states of the agents. In

this setting, global states are given as the composition of local states of the agents

and environment. The definition of interpreted systems in MCMAS is as follows.

Definition 16 (Interpreted systems (IS) [Fagin et al., 1995]). An interpreted system

is a tuple IS = ({Li, Acti, Pi, τi}i∈N, I, h), where Li is a finite set of possible local

states for agent i, Acti is a finite set of possible actions for agent i, Pi : Li → 2Acti\∅

is a local protocol function for agent i mapping possible actions for each local state,

τi : Li×Act1×· · ·×Actn → Li is a deterministic local transition function associating

a successor local state for agent i after executing a joint action at a local state,

I ⊆ L0×L1×· · ·×Ln is the set of initial global states, and h ⊆ L0×L1×· · ·×Ln×AP .

37

1 Agent m0

2 Vars:

3 u0 : boolean;

4 d0 : boolean;

5 end Vars

6 Actions = {val00,val01,val10,val11};

7 Protocol:

8 (u0=true and d0=true) : {val01,val10};

9 (u0=true and d0=false) : {val01,val10};

10 (u0=false and d0=true) : {val01,val10};

11 (u0=false and d0=false) : {val01,val10};

12 end Protocol

13 Evolution:

14 (u0=false and d0=false) if Action=val00;

15 (u0=true and d0=false) if Action=val10;

16 (u0=false and d0=true) if Action=val01;

17 (u0=true and d0=true) if Action=val11;

18 end Evolution

19 end Agent

Figure 2.14: Example of an agent in ISPL

1 Evaluation

2 u0 if m0.u0=true;

3 d0 if m0.d0=true;

4 u1 if m1.u1=true;

5 d1 if m1.d1=true;

6 end Evaluation

Figure 2.15: Evaluation of atomic variables

We say that G = L0 × · · · ×Ln is the set of possible global states for the system and

ACT = Act1 × · · · × Actn the set of joint actions.

MCMAS uses a dedicated programming language called Interpreted Systems Pro-

gramming Language (ISPL)9 to describe the specification of IS. ISPL specifies a multi-

agent system as an Environment agent and a set of normal agents similar to Definition

16. The Environment and normal agents have two sets of variables: local and observ-

able. Local variables are private, while observable variables are visible to all agents

in the system. Every agent also has a set of local actions, which are performed in

accordance with a protocol function representing their decision-making process. The

assignment of local states is given by a local evolution function which determines the

next local state based on the current local state and the joint actions performed by

all agents in the system at a given time step.

9User manual is accessible via https://vas.doc.ic.ac.uk/software/mcmas/manual.pdf

38

https://vas.doc.ic.ac.uk/software/mcmas/manual.pdf

1 InitStates

2 ((m0.u0=true and m0.d0=false) or (m0.u0=false and m0.d0=true)) and

3 ((m1.u1=true and m1.d1=false) or (m1.u1=false and m1.d1=true));

4 end InitStates

5

6 Formulae

7 #PR <<x>><<y>>[[z]](m0,x)(m1,y)(Environment,z)(G(F(d0 and u1)) and G(F(d1

and u0)));

8 end Formulae

Figure 2.16: Initial states and a formula to be verified

Example 4. This example is taken from [Toumi et al., 2015]. Consider a peer-to-

peer network with two agents. At each time step, each agent can only either try to

download or to upload. In order to download successfully, an agent must download

while the other uploads at the same time. Both agents want to download infinitely

often.

Figure 2.14 shows an agent for Example 4 described using ISPL and Figure 2.1710

shows the structure of the system. Agent m0 has two local variables: u0 and d0, which

correspond to download and upload respectively. There are 4 possible actions for m0

to manipulate the values of its local variables according to the evolution function:

action val00 sets u0 and d0 to false, action val01 sets u0 to false and d0 to true,

action val10 sets u0 to true and d0 to false, and action val01 sets u0 and d0 to true.

It is stated that at each time step, each agent can only either download or upload.

This is reflected in the protocol function, where in every possible local state, there are

only two actions available: val01 and val10. The goal of agent m0 (resp. m1) is to

download infinitely often, and may be expressed with the LTL formula GF(d0 ∧ u1)

(resp. GF(d1 ∧ u0)).

An ISPL model also contains an Evaluation section following the agents’ decla-

rations (see Figure 2.15). In this section, the atomic variables that are used in the

formulae to be verified in the model are declared. Figure 2.15 shows the definition

of 4 atomic variables: u0, d0, u1, d1. The formulae to be verified (see Formulae

section in Figure 2.16) are built over the atomic propositions defined here.

The description of the system is completed by declaring a set of initial states and

the set of formulae to be verified. As shown in Figure 2.16, the set of initial states

is defined in the section InitStates by means of a Boolean function determining

values of local variables. There is also a Fairness section which corresponds to

10For the sake of presentation, the actions are ommitted from the figure. However, it should be
clear which action leads to which state.

39

s0

u0,¬d0

u1,¬d1

s1

u0,¬d0

¬u1, d1

s2

¬u0, d0

u1,¬d1

s3

¬u0, d0

¬u1, d1

Figure 2.17: The structure of Example 4.

Büchi fairness constraints, a Groups section, and semantics of evolution function11.

The formula in Figure 2.16 is in the SL[1G] fragment of SL [Mogavero et al., 2012]

which is implemented in MCMAS with perfect recall strategies. The formula says

that there exist strategies for agent m0 and m1 that satisfy their goals. Indeed, the

formula is true since there exist strategies for both players that satisfy their goals.

The strategies are those that end with oscillating move between s1 and s2, or in other

words, strategies that end with (s1s2)ω.

2.6.4 PRALINE

PRALINE [Brenguier, 2013] is a tool to compute Nash equilibria in concurrent games

played over graphs. PRALINE finds pure Nash equilibria in games where the pref-

erences of the players are given by (payoff) functions that map the vertices of the

graph to integers. The goal of a player is to maximise the limit superior of her

payoff. Although the goals in PRALINE can be seen as a generalisation of Büchi

goals, PRALINE does not support full LTL goals. Thus, since games in PRALINE are

deterministic, the goals are strictly less expressive than LTL goals.

Example 5. This example is taken from [Brenguier, 2013]. A set of users share

access to a wireless channel. In each timeslot, users can either transmit or wait for

the next timeslot. Too many users choosing to emit in the same timeslot will result in

them failing to send data. Moreover, transmitting costs energy to the players. Players

seek to maximise the number of succesful data transmitions using the available energy.

11Detailed documentation is available from [MCMAS Web, 2019].

40

1 move {

2 legal p1 0;

3 legal p2 0;

4 if (energy1 > 0) legal p1 1;

5 if (energy2 > 0) legal p2 1;

6 }

7

8 update {

9 if (action p1 == 1)

10 energy1 = energy1 -1;

11 if (action p2 == 1)

12 energy2 = energy2 -1;

13

14 if (action p1 == 1 && action p2 == 0)

15 trans1 = trans1 + 1;

16 if (action p1 == 0 && action p2 == 1)

17 trans2 = trans2 + 1;

18 }

Figure 2.18: Part of the code to model Example 5

1,0,0,1 0,1,0,1

1,0,1,0 0,1,1,0

0,0,0,0

0,0 0,0

0,0 0,0

0,0

1,0

0,1

1,0

0,1

1,1

Figure 2.19: The structure of Example 5.

41

Figure 2.18 is one possible way to model the game in PRALINE. Players are p1 and p2,

energy levels are encoded in energy1 and energy2, and number of successful attempts

in trans1 and trans2. Players can always wait (action 0), and if their energy is not

equal to zero, then they can transmit (action 1). The arena representing an initial

energy level allowing only one attempt for each player is shown in Figure 2.19. The

labels of the nodes correspond to the valuation of the variables energy1, trans1,

energy2, and trans2.

2.7 Rational Verification

Many solution concepts have been proposed in the game theory literature [Maschler

et al., 2013] and among those concepts, Nash equilibrium is the most important and

widely used analytical tool in the game theory study [Osborne and Rubinstein, 1994].

A Nash equilibrium is an outcome where no player can benefit by changing strategies

unilaterally, that is, changing strategies while other players keep theirs unchanged.

Since we are assuming that players are acting rationally in pursuit of their goals, Nash

equilibrium is an ideal tool for analysing systems. The following sections present the

Simple Reactive Modules Language (SRML) [van der Hoek et al., 2005], Reactive

Modules Games (RMGs) [Gutierrez et al., 2013], the concept of equilibrium checking

which gives rise to a general paradigm of rational verification [Wooldridge et al.,

2016, Gutierrez et al., 2017b], and a prototype tool for equilibrium checking.

2.7.1 SRML

SRML is a strict subset of the Reactive Modules Language (RML) [Alur and Hen-

zinger, 1999], a modelling language that is used by Mocha, a model checking tool

[Alur et al., 1998b, Alur et al., 2001], as well as influenced formalisms used by numer-

ous other tools (including some of the tools presented in Section 2.6.) SRML defines

agents/players as modules. A module in SRML consists of:

• an interface, which defines the name of the module and lists the Boolean vari-

ables controlled by the module.

• a number of guarded commands, which defines the choices available to the mod-

ule at each state.

There are two kinds of guarded commands: init and update. init guarded commands

are used for initialising the Boolean variables controlled by the module. update

42

guarded commands are used for updating the value of those Boolean variables during

the run of the system. A guarded command has two parts: a “condition” part (the

“guard”) and an “action” part. The “guard” determines whether a guarded command

can be executed or not given the current state, while the “action” part defines how

to update the value of (some of) the variables controlled by a corresponding module.

Intuitively, ϕ; α can be read as “if condition ϕ is satisfied, then one of the choices

available to the module is to execute α”. Note that the value of ϕ being true does

not guarantee the execution of α, but it is enabled for execution thus may be chosen.

If no guarded commands of a module are enabled in some state, then that module

has no choice and the values of the variables controlled by it are assumed to remain

unchanged in the next state.

Formally, a guarded command g over a set of Boolean variables Φ is an expression

g : ϕ; x′1 := ψ1; . . . ;x′k := ψk

where the guard ϕ is a propositional logic formula over Φ, each xi is a member of

Φ and ψi is a propositional logic formula over Φ. Let guard(g) denote the guard of

g, thus, in the above rule, we have guard(g) = ϕ. It is required that no variable xi

appears on the left hand side of more than one assignment statements in the same

guarded command, hence no issue on the (potentially) conflicting updates arises. The

variables x1, . . . , xk are said to be controlled variables of g, and the set of controlled

variables are denoted by ctr(g). If no guarded command of a module is enabled, then

the values of all variables in ctr(g) remain unchanged. A set of guarded commands

is said to be disjoint if their controlled variables are mutually disjoint.

To make it clearer, the following is an example of a guarded command:

(p ∧ q)︸ ︷︷ ︸
guard

; p′ := true; q′ := false︸ ︷︷ ︸
action

The guard is the propositional logic formula (p∧ q), so this guarded command will be

enabled if both p and q are true. If the guarded command is chosen (to be executed),

then in the next time-step, variable p will be assigned to true and q to false.

Formally, an SRML module mi is defined as a triple mi = (Φi, Ii, Ui), where:

• Φi ⊆ Φ is the finite set of Boolean variables controlled by mi;

• Ii is a finite set of init guarded commands, such that for all g ∈ Ii, we have

ctr(g) ⊆ Φi;

43

• Ui is a finite set of update guarded commands, such that for all g ∈ Ui, we

have ctr(g) ⊆ Φi.

Definition 17 (SRML arena). An SRML arena A is formally defined to be an (n+2)-

tuple A = (N,Φ,m1, . . . ,mn), where N = {1, . . . , n} is a set of agents, Φ is a set of

Boolean variables, and for each i ∈ N,mi = (Φi, Ii, Ui) is an SRML module over Φ

that defines the choices available to agent i. It is required that {Φ1, . . . ,Φn} forms a

partition of Φ, hence every variable in Φ is controlled by some agent, and no variable

is controlled by more than one agent.

For every module mi = (Φi, Ii, Ui), an additional guarded command gskipi is intro-

duced. This command is given by:

gskipi =
∧

g∈Ui
¬guard(g) ; skip

This asserts that by executing gskipi will make the values of all variables in Φi to

remain unchanged. Define the set of update guarded commands that are available

to be executed as enabledi(v), where v is a valuation of variables in Φ that is visible

to mi. If there is no update guarded commands available, then gskipi is enabled.

Formally,

enabledi(v) =
{
g ∈ Ui ∪ {gskipi } : v |= guard(g)

}
.

This definition means that enabledi(v) is never empty.

Let g : ϕ ; x′i := ψi, . . . , x
′
k := ψk be a guarded command in module mi that

controls the variables in Φi. Define execi(g, v) as a propositional valuation for the

variables Φi as the result of executing g on v. It only specifies a valuation for the

variables in Φi and does not give the value of variables Φ\Φi. Formally,

exec(g, v) =
(
vi\ctr(g)

)
∪
{
xi ∈ {x1, . . . , xk} : v |= ψi

}
.

The progression of an SRML arena is defined by the execution of enabled guarded

commands, one for each module, in a synchronous and concurrent fashion. A joint

guarded command J = (g1, . . . , gn) is a profile of guarded commands, one for each

module. Write

enabled(v) = enabled1(v)× · · · × enabledn(v)

as the extension of guarded commands to joint guarded commands. Also write

exec(J, v) = exec1(g1, v) ∪ · · · ∪ execn(gn, v)

to denote the execution of guarded command J = (g1, . . . , gn). Moreover, write

execi(gi, v⊥) to indicate the initialisation of mi and extends it to exec(J, v⊥), where

J ∈ I1 × · · · × In to indicate joint initialisation.

44

2.7.2 LTL Reactive Modules Game

LTL Reactive Modules Games (RMGs) [Gutierrez et al., 2017b] have two components:

an arena and goals. The goals specify the preferences of players: every player i is

associated with a goal γi, where γi is an LTL formula. Formaly, a game is defined as:

G = (A, γ1, . . . , γn)

where A = (N,Φ,m1, . . . ,mn) is an arena with player set N = {1, . . . , n}, Boolean

variable set Φ, and mi an SRML module describing the choices available to each player

i ∈ N. Furthermore, for each player i ∈ N, the LTL formula γi represents the goal

that i wants to satisfy. Games are played by each player i selecting a deterministic

strategy σi that defines the player choices throughout the game. We write Φ−i for

Φ\Φi and let Vi (resp. V−i) denote the set of valuations to variables in Φi (resp.

Φ−i). Given an arena A = (N,Φ,m1, . . . ,mn), a deterministic strategy for module

mi = (Φi, Ii, Ui) is σi = (Qi, q
0
i , δi, τi), where Q is a finite and non-empty set of states,

q0
i ∈ Qi is the initial state, δi : Qi × V−i → Qi \ {∅} is a transition function, and

τi : Qi → Vi is an output function.

This model of strategies is, technically, given by deterministic Moore machines.

For a machine σi representing a strategy for player i, the input language corresponds

to the actions of other players, while the outputs are player i ’s actions implementing

the strategy. There are several advantages of representing strategies as finite state

machines. Firstly, the representation scheme is finite. Whereas abstract representa-

tions using functions may have an infinitely large domains, which makes the study of

some problems difficult. Secondly, finite state machine representations are enough for

players whose goals are expressed in temporal logic formulae [Gutierrez et al., 2015b].

Finally, the use of finite state machine strategies is in fact standard practice in the

literature on iterated games [Binmore, 1992]. For a more detailed discussion on this

topic, see [Gutierrez et al., 2015b].

In this thesis, all strategies are assumed to be consistent, that is, all strategies

comply with the module’s specification12. Formally, a strategy σi is consistent with

mi if the following two conditions are satisfied:

1. for the initial state q0
i , we have τi(q

0
i) = exec(g, v⊥) for some g ∈ I1 × · · · × In,

2. for all q, q′ ∈ Qi and v = vi ∪ v−i ∈ V such that δ(q, v−i) = q′ and vi = τi(q),

we have τ(q′) = exec(gi, v) for some gi ∈ enabledi(v).

12This is related to protocol-compliant in MCMAS system.

45

That is, the valuation prescribed by the strategy σi of i at every state q ∈ Qi ∪ {q0
i }

can be realised by mi. Hereafter, let Σi be the set of consistent strategies for mi and

σi ∈ Σi.

Once every player i has selected a strategy σi, we have a strategy profile ~σ =

(σ1, . . . , σn) and an outcome of the game ρ(~σ). A strategy profile ~σ = (σ1, . . . , σn) is

consistent with A if each σi is consistent with mi
13. The outcome determines whether

each player’s goal is satisfied or not. A goal γi is satisfied by an outcome ρ(~σ) if and

only if ρ(~σ) |= γi. In order to simplify notations, we write ~σ |= γi for ρ(~σ) |= γi.

A preference relation �i is defined over outcomes for each player i with goal γi

for strategy profiles ~σ and ~σ′ by saying that

~σ �i ~σ′ if and only if ~σ′ |= γi implies ~σ |= γi.

Now the solution concept of Nash equilibrium [Osborne and Rubinstein, 1994] for

LTL RMGs can be defined as follows: given a game G = (A, γ1, . . . , γn), a strategy

profile ~σ is said to be a Nash equilibrium of Gif for all players i and all strategies ~σ′

in the game, we have

~σ �i (~σ−i, σ
′
i)

where (~σ−i, σ′i) denotes strategy profile (σ1, . . . , σi−1, σ
′
i, σi+1, . . . , σn). Let NE(G) be

the set of (pure strategy) Nash equilibria of game G.

2.7.3 CTL Reactive Modules Games

Similar to LTL RMGs, CTL RMGs have two components: an arena and goals. In CTL

RMGs, the goal of each player is specified with a CTL formula and each player strategy

is non-deterministic. The definition of non-deterministic strategies is a generalisation

of that of determinisitic ones, thus the transition function is redefined as follows: δi :

Qi×V−i → 2Qi \ {∅}. The outcome [[~σ]] of a game with arena A = (N,Φ,m1, . . . ,mn)

is defined as a Kripke structure KA~σ |Φ associated with the SRML arena A~σ = (N,Φ∪⋃
i∈N Qi,mσ1 , . . . ,mσn) restricted to valuations with respect to Φ. The concept of

Nash equilibrium with respect to strategy profile ~σ of consistent non-deterministic

strategies is a straightforward extension of that in LTL RMGs.

13In the rest of this thesis, we restrict our attention to consistent strategy profiles.

46

2.8 Concurrent Multi-Player Games

This section contains some definitions that are going to be used in some of the next

chapters. As defined in Section 2.3.2, a concurrent game structure (CGS) is a tuple

M = (N, (Aci)i∈N, St, s0, tr, λ). A multi-player game can be defined on top of a

structure M by associating each player with a goal. In the rest of this thesis, we

consider games with LTL goals. The rationale behind the choice of using LTL as the

specification language is as follows. Firstly, LTL is arguably more intuitive, since

it uses fewer modal operators. Secondly, branching-time logics are usually used to

capture some uncertainty in some system, e.g., incomplete information or uncertainty

about the history of the run—hence the branching. Thus, since our setting is in

perfect recall and complete information, it is reasonable to assume that the strategies

are deterministic and, as such, induce some unique run. With this setting, we argue

that LTL is the most appropriate language to specify the properties of the system.

Definition 18. A (concurrent multi-player) LTL game is a tuple GLTL = (M, (γi)i∈N)

where each γi is the goal of player i, given as an LTL formula over AP.

To define games with parity goals we will consider priority functions. Let α :

St→ N be a priority function. We say that a path π satisfies α : St→ N, and write

π |= α in such a case, if the minimum number occurring infinitely often in the infinite

sequence α(π0), α(π1), α(π2), . . . is even.

Definition 19. A parity game is a two-player zero-sum turn-based game given by

a labelled finite graph H = (V0, V1, E, α) such that St = V0 ∪ V1 is a set of states

partitioned into Player 0 (V0) and Player 1 (V1) states, respectively, E ⊆ V × V is

a set of edges/transitions, and α : St → N is a labelling priority function. Player 0

wins if the smallest priority that occurs infinitely often in the infinite play is even.

Otherwise, player 1 wins.

It is known that solving a parity game (checking which player has a winning

strategy) is an NP ∩ coNP problem [Jurdzinski, 1998], and recently it is shown that

it can be solved in quasi-polynomial time [Calude et al., 2017]. Despite more than 30

years of research, and extremely promising practical performance, it is still unknown

whether parity games can be solved in polynomial time.

Definition 20. A concurrent multi-player parity game is a tuple GPAR = (M, (αi)i∈N),

where each αi : St→ N is the goal of player i, given as a priority function over St.

47

Hereafter, for statements regarding either LTL or Parity games, we will simply

denote the underlying structure as G. Games are played by each player i selecting

a strategy σi that will define how to make choices over time. Formally, for a given

game G, a strategy σi = (Si, s
0
i , δi, τi) for player i is a finite state machine with output

(a transducer), where Si is a finite and non-empty set of internal states, s0
i is the

initial state, δi : Si × ~Ac → Si is a deterministic internal transition function, and

τi : Si → Aci an action function. Let Σi be the set of strategies for player i. A

strategy is memoryless in G from s if Si = St, s0
i = s, and δi = tr. Once every player i

has selected a strategy σi, a strategy profile ~σ = (σ1, . . . , σn) results and the game

has an outcome, a path in M, which we will denote by π(~σ). Because strategies are

deterministic, π(~σ) is the unique path induced by ~σ, that is, the infinite sequence

s0, s1, s2, . . . such that

• sk+1 = tr(sk, (τ1(sk1), · · · , τn(skn))), and

• sk+1
i = δi(s

k
i , (τ1(sk1), · · · , τn(skn))), for all k ≥ 0.

Note that the path induced by the strategy profile ~σ(σ1, . . . , σn) from state s0

corresponds to the one generated by the finite transducer T~σ obtained from the com-

position of the strategies σi’s in ~σ, with input set St and output set ~Ac, where the

initial input is s0. Since such transducer is finite, the generated path π is ultimately

periodic, that is, there exists p, r ∈ N such that πk = πk+r for every p ≤ k. This means

that, after the prefix π≤p, the path loops indefinitely over the sequence πp+1 . . . πp+r.

Definition 21. A bisimulation, denoted by ∼, between states s∗ ∈ St and t∗ ∈ St′

is a non-empty binary relation R ⊆ St × St′, such that s∗ R t∗ and for all s, s′ ∈ St,

t, t′ ∈ St′, and ~a ∈ ~Ac:

• s R t implies λ(s) = λ′(t),

• s R t and tr(s,~a) = s′ implies tr(t,~a) = t′′ for some t′′ ∈ St′ with s′ R t′′,

• s R t and tr(t,~a) = t′ implies tr(s,~a) = s′′ for some s′′ ∈ St with s′′ R t′.

Then, if there is a bisimulation between two states s∗ and t∗, we say that they are

bisimilar and write s∗ ∼ t∗ in such a case. We also say that CGSs M and M′ are

bisimilar (in symbols M ∼M′) if s0 ∼ s′0. Bisimilar structures satisfy the same set

of temporal logic properties, a desirable property that will be relevant later.

48

For parity games, we can define a pereference relation �i over outcomes for each

player i analogously as previously defined. For two strategy profiles ~σ and ~σ′ in G,

we have

π(~σ) �i π(~σ′) if and only if π(~σ′) |= αi implies π(~σ) |= αi.

On this basis, we can define the concept of Nash equilibrium [Osborne and Rubinstein,

1994] for a multi-player game with parity goals: given a game G, a strategy profile ~σ

is a Nash equilibrium of G if, for every player i and strategy σ′i ∈ Σi, we have

π(~σ) �i π((~σ−i, σ
′
i))

where (~σ−i, σ′i) denotes (σ1, . . . , σi−1, σ
′
i, σi+1, . . . , σn), the strategy profile where the

strategy of player i in ~σ is replaced by σ′i. Let NE(G) denote the set of Nash equilibria

of G. In [Gutierrez et al., 2017a] it is shown that, using the model of strategies defined

above, the existence of Nash equilibria is preserved across bisimilar systems. This is in

contrast to other models of strategies considered in the concurrent games literature,

which do not preserve Nash equilibria. Because of this, hereafter, we say that {Σi}i∈N

is a set of bisimulation-invariant strategies and that NE(G) is the set of bisimulation-

invariant Nash equilibrium profiles of G.

Definition 22. A deterministic automaton on infinite words is a tuple

A = (AP, Q, q0, ρ,F)

where Q is a finite set of states, ρ : Q × AP → Q is a transition function, q0 is an

initial state, and F is an acceptance condition. We mainly use parity and Streett

acceptance conditions. A parity condition F is a partition {F1, . . . , Fn} of Q, where

n is the index of the parity condition and any [1, n] 3 k is a priority. We use a priority

function α : Q → N that maps states to priorities such that α(q) = k if and only

if q ∈ Fk. For a path π = q0, q1, q2 . . . , let Inf(π) denote the set of states occurring

infinitely often in the path:

Inf(π) = {q ∈ Q | q = qi for infinitely many i ’s}

A path π is accepted by a deterministic parity word (DPW) automaton with condition

F if the minimum priority that occurs infinitely often is even, i.e., if the following

condition is satisfied:
(

min
k∈[1,n]

(Inf(π) ∩ Fk 6= ∅)

)
mod 2 = 0.

49

A Streett condition F is a set of pairs {(E1, C1), . . . , (En, Cn)} where Ek ⊆ Q and

Ck ⊆ Q for all k ∈ [1, n]. A path π is accepted by a deterministic Streett word (DSW)

automaton S with condition F if π either visits Ek finitely many times or visits Ck

infinitely often, i.e., if for every k either Inf(π) ∩ Ek = ∅ or Inf(π) ∩ Ck 6= ∅.

2.8.1 Equilibrium Checking

Wooldridge et al. [Wooldridge et al., 2016] proposes the problem of Equilibrium

Checking, which basically asks whether a given temporal formula ϕ is satisfied on

some run corresponding to a Nash equilibrium of the system. In this setting, the

agents are seen as non-deterministic reactive programs. Non-determinism means

that agents can (freely) choose any available actions, while reactivity captures the

idea that agents are non-terminating.

The notion of equilibrium checking can be regarded as a counterpart to model

checking and classical verification with a more “restricted” condition where we are

given a (multi-agent) system G and a temporal logic formula ϕ representing a de-

sirable property, and the question is whether ϕ could be satisfied on some run that

would arise from a Nash equilibrium collection of choices by players within the system.

This idea can be captured in the following decision problem:

E-Nash
Given : Multi-agent system G; temporal formula ϕ.
Question : Is there any ~σ ∈ NE(G) such that ρ(~σ) |= ϕ?

We can also ask the obvious counterpart of E-Nash:

A-Nash
Given : Multi-agent system G; temporal formula ϕ.
Question : Is it the case that for all ~σ ∈ NE(G), we have ρ(~σ) |= ϕ?

Other decision problems are: “verifying whether a system has any Nash equilibria”

(Non-Emptiness) and “checking whether a given strategy profile represents a Nash

equilibrium” (Membership):

Non-Emptiness
Given : Multi-agent system G.
Question : Is it the case that NE(G) 6= ∅?

Membership
Given : Multi-agent system G; strategy profile ~σ.
Question : Is it the case that ~σ ∈ NE(G)?

50

Gutierrez, Harrenstein, and Wooldridge [Gutierrez et al., 2013] use Nash equi-

librium to analyse a game-like concurrent system called Iterated Boolean Games

(iBG) and investigate which computations can be generated in equilibrium. How-

ever, [Gutierrez et al., 2013] does not provide a language to reason about (Nash)

equilibria of the system, hence the reasoning cannot be done explicitly. Gutierrez et

al. in [Gutierrez et al., 2014] provide a language called Equilibrium Logic (EL) to ad-

dress this issue and introduce a more appropriate computational model to represent

concurrent programs. EL extends branching time logic with a new path quantifier

[NE]ϕ expressing that ϕ holds on all Nash equilibrium computations of the system.

This allows us to reason about equilibria of the system directly in the object language

without having to carry it out at the meta-level.

2.8.2 A Prototype Equilibrium Checking Tool

The list of tools mentioned in Section 2.6 is obviously not exhaustive. However, those

tools are actively being developed and arguably some of the most popular ones. In

respect of the proposed notion of equilibrium checking (Section 2.8.1), the mentioned

tools do not have any explicit support for it except PRALINE which allows us to

find pure strategy Nash equilibrium in some generalised Büchi objective games. The

other most probable candidate is MCMAS since it uses SL, which is able to express the

existence of Nash equilibria in a concurrent multi-agent game. Thus in principle, it

is possible to analyse some equilibrium properties of MCMAS systems. Indeed, later

in Chapter 3 a method to perform equilibrium checking/rational verification using

MCMAS will be discussed.

Apart from those mentioned in Section 2.6, one of the more recent multi-agent

systems verification tools is EAGLE (Equilibrium Analyser for Game Like Environ-

ments) [Toumi et al., 2015]. EAGLE is a prototype tool for equilibrium checking which,

particularly, solves the Membership problem. Thus, it needs two given inputs: a

multi-agent system represented as a CTL RMG G and a strategy profile ~σ. G is

represented as a set of agents, defined using SRML [van der Hoek et al., 2005], and

agents goals are specified in CTL. A strategy profile ~σ is represented as a collection

of non-deterministic strategies for the agents encoded using SRML.

The basic algorithm of EAGLE is shown in Algorithm 6, where G = (A, γ1, . . . , γn),

A = (N,Φ,m1, . . . ,mn), and γi is the goal of mi. It uses a CTL variant of algorithms

first introduced in [Gutierrez et al., 2013] which relies on the existence of two or-

acles, one for model checking and one for satisfiability of temporal logic formulae.

EAGLE uses open source external libraries for CTL satisfiability (Ctl Sat [Prezza,

51

Algorithm 6 EAGLE Basic Algorithm

1: function eqcheck(G, ~σ)
2: KA~σ |Φ = Arena2Kripke(A~σ = (N,Φ ∪⋃i∈N Qi,mσ1 , . . . ,mσn))
3: for each i ∈ N do
4: if KA~σ |Φ 6|= γi then (calling Mr.Waffles model checker)
5: if Sat(ThCTL(A) ∧ γi) then (calling Ctl Sat)
6: return “no”
7: end if
8: end if
9: end for

10: return “yes”
11: end function
12:

13: function Arena2Kripke(A~σ = (N,Φ ∪⋃i∈N Qi,mσ1 , . . . ,mσn))
14: SA := ∅, S0

A := ∅, RA := ∅, πA := ∅
15: C1 := I1; . . . ;Cn := In;
16: for each J ∈ C1 × · · · × Cn do
17: SA := SA ∪ {exec(J, v⊥)}
18: S0

A := SA
19: πA := πA ∪ {(exec(J, v⊥), (exec(J, v⊥))}
20: end for
21: X := ∅
22: while X 6= SA do
23: X := SA
24: for each v ∈ SA do
25: C1 := enabledi(πA(v)); . . . ;Cn := enabledn(πA(v))
26: for each J ∈ C1 × · · · × Cn do
27: SA := SA ∪ {exec(J, πA(v))}
28: πA := πA ∪ {(exec(J, πA(v)), exec(J, πA(v)))}
29: end for
30: end for
31: end while
32: for each (v, v′) ∈ SA × SA do
33: C1 := enabledi(πA(v)); . . . ;Cn := enabledn(πA(v))
34: for each J ∈ C1 × · · · × Cn do
35: if exec(J, πA(v)) = πA(v′) then
36: RA := RA ∪ {(v, v′)}
37: end if
38: end for
39: end for
40: return KA = (SA, S

0
A, RA, πA)

41: end function

52

2016]) and CTL model checking (Mr.Waffles [Reynaud, 2016]). Key to EAGLE’s

performance is the construction of a formula ThCTL(A) using the construction in the

proof for Lemma 1 (adapted from [Gutierrez et al., 2017b]).

Lemma 1. For every arena A of size |A|, there is a CTL formula ThCTL(A) of size

polynomial in |A| such that for all ρ : N→ 2Φ, ρ ∈ runs(A) iff ρ |= ThCTL(A).

Proof. Given an arena A = (N,Φ,m1, . . . ,mn), we define the formula ThCTL(A) =

Init(A) ∧ Update(A). We then define Unch(Ψ) as variables that take the same

value in the next state, formally:

Unch(Ψ) =
∧

x∈Ψ

(x↔ AXx).

We define the effect of a single initialisation guarded command as follows:

Initi(g = >; x′1 := b1; . . . ;x′k := bk) =
(k∧

l=1

xl ↔ bl
)
∨
(∧

x∈Φi\ctr(g)
x↔ ⊥

)
.

The expression Initi then captures the semantics of initialisation commands (we write

⊕ to denote “exactly one” operator):

Initi =
⊕

g∈Ii
Initi(g) =

∨

g∈Ii

(
Initi(g) ∧

∧

g′∈Ii\{g}
¬Initi(g′)

)

then we have:

Init(A) =
∧

i∈N
Initi.

Next we define the semantics of update rules. Define the effect of a single update

guarded command as follows:

Updatei(g = ϕ; x′1 := ψ1; . . . ;x′k := ψk) = ϕ∧
(k∧

l=1

ψl ↔ AXxl

)
∧Unch(Φi\ctr(g)).

Then we define the overall effect of i ’s update commands:

Updatei =
(∧

g∈Ui
¬guard(g) ∧Unch(Φi)

)
∨
⊕

g∈Ui
Updatei(g).

Finally:

Update(A) = AG
∧

i∈N
Updatei.

Current implementation of EAGLE is roughly a prototype and, it is still limited in

scope and not optimised. Currently, it only supports CTL and perfect information.

It also does not have any graphical user interface.

53

Chapter 3

Rational Verification with MCMAS

This chapter presents an approach to rational verification with MCMAS [MCMAS

Web, 2019, Cermák et al., 2014]. MCMAS allows automatic verification of specifica-

tions that use epistemic, temporal, and cooperation modalities. The modalities can

be used to define properties of various systems such as communication protocols, se-

curity protocols, games, and other properties that may be difficult to represent using

temporal operators only. MCMAS adopts interpreted systems [Fagin et al., 1995] as

the formal semantics to represent systems comprised of multiple entities, and uses a

dedicated programming language called Interpreted Systems Programming Language

(ISPL) to describe the systems. Later in Section 3.3, a method to perform rational

verification on LTL RMGs, as well as a tool that implements the method, will be

presented.

3.1 Interpreted Systems

Interpreted systems [Halpern and Moses, 1990, Fagin et al., 1995] is a type of com-

putationally grounded semantics that allows one to model temporal and epistemic

properties of multi-agent systems and distributed computer systems. Intuitively, it

describes a system by defining the states in which each agent and the environment

can find itself. There are two kinds of state: local and global states. Local states

model the configuration of the agent in the system at each time-step. Given an agent

i ∈ N, Li is a set of local states for agent i. Refer E as the environment agent and

denote LE as the set of local states for E. The set G of global states of the system is

given by

G = L1 × · · · × Ln × LE.

54

Definition 23 (Global state). A global state g ∈ G is defined as tuple g = (l1, . . . , ln, lE)

that defines the configuration of the whole system in an instant of time. In that par-

ticular global state, agent 1 is in local state l1 ∈ L1, agent 2 is in local state l2 ∈ L2,

. . . , agent n is in local state ln ∈ Ln, and the environment is in lE ∈ LE.

Definition 24 (Agent). An agent i ∈ N is a tuple i = (Li, Acti, P ri, ti) where:

• Li is the set of local states ;

• Acti is the set of individual actions ;

• Pri : Li → (2Act \ {∅}) is the protocol function;

• ti : Li ×ACT → Li is the local transition function, where ACT = Act1 × · · · ×
Actn × ActE is the set of joint actions, such that for li ∈ Li and ai ∈ Acti,

ti(li, ai) is defined iff ai ∈ Pri(li).
The intuitive explanation is an agent i is in local state li ∈ Li, which represents

the information it knows about the system, and it can perform action ai ∈ Acti based

on protocol function Pri. A joint action makes an overall change in the state of the

system according to transition function ti.

Definition 25 (Interpreted system). An interpreted system is a tuple M = (N, I,Π)

where:

• every i ∈ N is an agent;

• I ⊆ G is the set of global initial states ;

• Π : G → 2AP is the labelling function.

Naturally, interpreted systems induce Kripke structures which can be used to

interpret our specification language. The induced structures of IS M = (N, I,Π) are

defined as a tuple KM = (G , I, T,Π) where:

• G = L1 × · · · × Ln × LE is the set of global states reachable from initial states

in I via T ;

• I is the set of global initial states;

• T = G ×ACT ×G is a transition relation representing the temporal evolution

of the system, where ACT = Act1×· · ·×Actn×ActE is the set of joint actions,

such that for li ∈ Li and ai ∈ Acti, ti(li, ai) is defined if, and only if, ai ∈ Pri(li);

• Π : G → 2AP is the labelling function. We write Π|l to denote the restriction of

Π to l ∈ g , where g ∈ G .

55

3.2 Interpreted System Programming Language

The Interpreted Systems Programming Language (ISPL)1 specifies a multi-agent sys-

tem as an Environment agent and a set of normal agents. The Environment and

normal agents have two sets of variables: local and observable. Local variables are

private, while observable variables are visible to all agents in the system. Every agent

also has a set of actions, a protocol function, and an evolution function.

ISPL also specifies the definition of initial states, propositions, groups, fairness

formulae, and formulae to be checked. The following is the general structure of ISPL:

1. Agents’ declarations. This section are used to define an agent using a sequence

of declarations. The syntax is as follows:

1 Agent <agentID>

2 <agent_body>

3 end Agent

where <agentID> is a valid agent name (not a reserved keyword for normal agent

and Environment for the Environment agent), and <agent_body> contains the

declaration of variables, actions, protocol, and evolution function for each agent.

Variables. There are two types of variables: local and observable. Local vari-

ables can be defined with the following syntax:

1 Vars:

2 <var_name> : <var_type>

3 end Vars

Observable variables are of the two types: local and global. Local observable

variables in normal agents can be defined as follows:

1 Lobvars = {var_0,...,var_n}

1Documentation and user manual is available from http://vas.doc.ic.ac.uk/software/

mcmas/

56

http://vas.doc.ic.ac.uk/software/mcmas/
http://vas.doc.ic.ac.uk/software/mcmas/

while (global) observable variables in the Environment agent can be seen by all

agents in the interpreted system and defined as follows:

1 Obsvars:

2 <var_name> : <var_type>

3 end Obsvars

Actions. All actions of an agent can be defined as follows:

1 Actions = {action_0,...,action_n}

Protocol. A line in a protocol function is composed of a condition, which is a

Boolean formula over local variables, and a list of actions. If the condition is

satisfied, the actions in the list are allowed to be performed. The syntax is as

follows:

1 Protocol:

2 <condition> : <list_of_actions>

3 end Protocol

To make it clearer, consider the following example:

1 Protocol:

2 (p=true and q=false) : {ac0,ac1};

3 end Protocol

action ac0 and ac1 only available (to be chosen and executed) at states in which

p is true and q is false.

Evolution function. A line in an evolution function consists of a condition and

a set of assignments of local variables. The syntax is as follows:

1 Evolution:

2 <assignment> if <condition>

3 end Evolution

57

To make it clearer, consider the following example:

1 Evolution:

2 (p=true) if Action=ac0;

3 (p=false) if Action=ac1;

4 end Evolution

if the agent executes ac0, then it will set the value of p to true, meanwhile if

ac1 is executed, then it will set the value of p to false.

2. Evaluation function. An evaluation function consists of a group of atomic propo-

sitions, which are defined over global states. Each atomic proposition is asso-

ciated with a Boolean formula over local variables of all agents and observable

variables in the Environment agent. The syntax is as follows:

1 Evaluation

2 <proposition_declaration>

3 end Evaluation

where <proposition_declaration> is a sequence of lines of the form

<proposition> if <condition_on_states>, where <proposition> is a valid

ISPL identifier (not a reserved keyword) and <condition_on_states> is a

Boolean formula.

3. Initial states. Initial states are defined by a Boolean formula over variables. It

goes by the following syntax:

1 InitStates

2 <condition_on_states>

3 end InitStates

where, similar to the evaluation function, <condition_on_states> is a Boolean

formula over all variables of the agents and the Environment.

4. Groups declaration. Groups are used in formulae involving group modalities. A

group consists of one or more agents, including the Environment. The syntax

is as follows:

58

1 Groups

2 <groups_declaration>

3 end Groups

where <groups_declaration> takes the following form

1 name_of_group = {agent_0,...,agent_n,Environment}

5. List of formulae to be verified. A formula to be checked is defined over atomic

proposition. The syntax is as follows:

1 Formulae

2 <formulae_list>

3 end Formulae

where <formulae_list> is a sequence of Strategy Logic formulae, with the

following syntax.

SL Formula ISPL Syntax

¬ϕ ! formula

ϕ ∧ ϕ formula and formula

ϕ ∨ ϕ formula or formula

Xϕ X formula

Fϕ F formula

Gϕ G formula

ϕUϕ formula U formula

〈〈x〉〉ϕ <<variable >> formula

[[x]]ϕ [[variable]] formula

(i, x)ϕ (agent,variable) formula

59

“Agent”
“Lstate” (local state)
“Lgreen” (green local state)
“Action”
“Protocol”
“Ev” (evolution function)
“Evaluation”
“InitStates”
“Groups”
“Formulae”
“end”
“if”
“and”
“or”
“->” (implication)
“AG” (temporal operator AG)
“EG” (temporal operator EG)
“AX” (temporal operator AX)
“EX” (temporal operator EX)
“X” (temporal operator X)
“F” (temporal operator F)
“G” (temporal operator G)
“AF” (temporal operator AF)
“EF” (temporal operator EF)
“A” (universal path quantifier)
“E” (existential path quantifier)
“U” (temporal operator U)
“K” (epistemic operator)
“GK” (epistemic operator for everyone knows)
“GCK” (epistemic operator for common knowledge)
“O” (operator for correct behaviour)
“KH” (operator for epistemic+deontic modality)
“DK” (epistemic operator for distributed knowledge)

Figure 3.1: ISPL reserved keywords

Figure 3.1 shows reserved keywords in ISPL, and Figure 3.2 shows the general

structure of an interpreted system represented in ISPL code.

60

1 Semantics = MultiAssignment | SingleAssignment

2 Agent Environment

3 Obsvars:

4 ...

5 end Obsvars

6 Vars:

7 ...

8 end Vars

9 Actions = {...};

10 Protocol:

11 ...

12 end Protocol

13 Evolution:

14 ...

15 end Evolution

16 end Agent

17

18 Agent m0

19 Vars:

20 ...

21 end Vars

22 Actions = {...};

23 Protocol:

24 ...

25 end Protocol

26 Evolution:

27 ...

28 end Evolution

29 end Agent

30

31 Evaluation

32 ...

33 end Evaluation

34

35 InitStates

36 ...

37 end InitStates

38

39 Groups

40 ...

41 end Groups

42

43 Fairness

44 ...

45 end Fairness

46

47 Formulae

48 ...

49 end Formulae

Figure 3.2: General structure of ISPL code

61

RMG G described in SRML code

Parse input

System M in ISPL mapped from G Sl formula ϕNE

MCMAS checks ϕNE against M

“TRUE”

There exists a Nash equilibrium

“FALSE”

There exists no Nash equilibrium

Figure 3.3: The general flow of the approach.

3.3 Rational Verification with MCMAS

In this section, we describe our approach to performing rational verification of multi-

agent systems represented as LTL RMGs using MCMAS. To this end, we need to

translate SRML code, used in RMGs, into ISPL code and perform rational verifi-

cation using MCMAS engine. In particular, we want to use MCMAS to solve the

NE-Emptiness problem of our LTL RMGs. The general flow of this approach is

shown in Figure 3.3.

3.4 Translating SRML to ISPL

The high-level nature of SRML allows it to represent the specifications of open systems

in a concise manner. The challenge of translating SRML to ISPL is finding a way to

fill the gap of SRML’s abstraction. In this section, we present a technique to translate

SRML into ISPL and in doing so to be able to do equilibrium analysis of multi-agent

systems modelled as SRML games.

3.4.1 States, Actions, and Variables in ISPL

Let A be an SRML arena A = (N,Φ,m1, . . . ,mn), and mi an SRML module mi =

(Φi, Ii, Ui) that we want to map into an agent in IS i = (Li, Acti, P ri, ti). The set of

local states Li can be built from all possible valuations of Boolean variables that are

visible to mi.

Since each module mi, with i ∈ N, controls a set of variables Φi and for each

x ∈ Φi, it can be set to either true or false, then there will be 2|Φi| possible dis-

62

tinct configurations of variables valuations in Φi which corresponds to the number of

possible actions in Acti of agent i.

The list of variables controlled by modulemi can be put directly into agent i ’s Vars

section in ISPL. However, note that variables in the Vars list are private variables.

These variables are only visible to agent i. To simulate the notion of public variable,

which is a default assumption in the perfect information setting, we need to apply a

“mirroring” technique. This technique is presented in the next section.

3.4.2 Simulating Public Variables in ISPL

Only variables placed inside the Obsvars tag in Agent Environment are visible to all

agents in the system. We exploit this feature to make private variables in normal

agents be public. This technique in principle employs a mirroring method, that is,

making copies of private variables and placing them inside the Agent Environment’s

Obsvars tag. The variable values are also updated according to the behaviour of

corresponding normal agents. The following example shows how it works:

1 Agent Environment

2 Obsvars:

3 copy_of_p: boolean;

4 end Obsvars

5 ...

6 Evolution:

7 copy_of_p = false if i.Action = ac0;

8 copy_of_p = true if i.Action = ac1;

9 end Evolution

10 ...

11

12 Agent i

13 Vars:

14 p: boolean;

15 end Vars

16 ...

17 Evolution:

18 p = false if Action = ac0;

19 p = true if Action = ac1;

20 end Evolution

21 ...

22 InitStates

23 ...

24 Environment.copy_of_p=i.p;

25 ...

26 end InitStates

27 ...

63

Using this approach, the value of copy-of-p is the same as the value of p in initial

states and each time-step.

3.4.3 Initial States in ISPL

Since SRML allows a module to have more than one init guarded command (hence,

be non-deterministic), we could capture this by executing all possible combinations

of “choices” (enabled init guarded commands) in the initialisation of the variables in

Φ.

Let A be an SRML arena A = (N,Φ,m1, . . . ,mn) and M be an interpreted system

M = (N, I,Π). We can build the set of global initial states I ⊆ G from the product

of the set of init guarded commands of each module mi in A,that is, enabled(v⊥) =

enabled1(v⊥)×· · ·× enabledn(v⊥). Now, let J = enabled(v⊥). Then we have J 3 j =

{gk1 , . . . , gkn}, where gki ∈ Ii. Assume without lost of generality that each module mi

has t number of init guarded commands and J has u number of elements, hence, I =

exec((g1
1, . . . , g

1
n), v⊥)∪· · ·∪exec((gt1, . . . , gtn), v⊥) = exec(j1, v⊥)∪· · ·∪exec(ju, v⊥) =⋃

ji∈J exec(ji, v⊥).

Thus, Init sections that contain only one command can be mapped directly to

InitStates of ISPL. Otherwise, the non-deterministic initialisation of variables can

be simulated using the or connective. To make it clearer, consider the following

SRML modules2:

module ma controls p, q module mb controls r, s
init init
:: true; p′ := true, q′ := false; :: true; r′ := true, s′ := false;

:: true; r′ := false, s′ := true;

These initialisations can be translated into ISPL as follows:

1 InitStates

2 (ma.p=true and ma.q=false)

3 and

4 (mb.r=true and mb.s=false) or (mb.r=false and mb.s=true);

5 end InitStates

2The update sections are ommitted since they are not relevant for this particular example.

64

3.4.4 Protocols in ISPL

Given an SRML module mi = (Φi, Ii, Ui) that has a set of update guarded commands

Ui = {g1, g2, . . . , gj}, such that for each gl ∈ Ui we have ctr(gl) = {x1, x2, . . . , xk},
where xm ∈ Φi, the update commands in SRML are as follows:

update
:: ϕ1 ; x′1 := ψ1,1; . . . ;x′k := ψ1,k;

...
:: ϕj ; x′1 := ψj,1; . . . ;x′k := ψj,k;

then we can build the protocol function Pri of agent i in ISPL using Algorithm 7,

which runs in exponential time with respect to the number of variables visible to

module mi, that is, variables that appear in guard(g), with g ∈ Ui. We write Pri(li)

to denote the protocol for the local state li ∈ Li and ti(li, ai) to denote the set of

local states that can be reached in accordance with agent i ’s local transition function

ti from li by executing action ai.

Algorithm 7 Build Protocol

1: function buildpro(N,Φ,m1, . . . ,mn)
2: Pri := ∅;
3: Li := V ;
4: for each v ∈ V , li ∈ Li do
5: for each gi ∈ Ui do
6: x′1 := ∅; . . . ;x′k := ∅;
7: if gi ∈ enabled(v) then
8: for each xi ∈ ctr(gi) do
9: if xi ∈ exec(gi, v) then

10: x′i := >;
11: else
12: x′i := ⊥;
13: end if
14: end for
15: find ai ∈ Acti such that l′i ∈ ti(li, ai) and

Π|l(l′i) = {x′1, . . . , x′k};
16: if ai /∈ Pri(li) then
17: Pri(li) := Pri(li) ∪ ai;
18: end if
19: end if
20: end for
21: end for
22: return Pri;
23: end function

65

Observe that for every SRML module mi = (Φi, Ii, Ui) that we want to map into

an agent i = (Li, Acti, P ri, ti) in ISPL, we will have a set of protocol Pri of size |Li|.
This directly follows from Algorithm 7, line 4. Also, observe that for each li ∈ Li, the

size of Pri(li) is at most 2|Φi|, which follows from Algorithm 7, line 5. Suppose the

guard of each gl ∈ Ui is satisfied/true in state li and the action part of gl is complete

and unique. That is, there is no such gv and gw, v 6= w, and for all y ∈ ctr(gv) if and

only if y ∈ ctr(gw) such that they give the same configuration in the next time-step

for each variable y. Then, there will be at most 2n possible distinct configurations,

where n is the total number of variables controlled by mi, hence |j| = |Acti| = 2|Φi|.

To reason about the correctness of Algorithm 7 in building the protocol function

of agent i, we illustrate it via a toy model in Example 6. Observe that each valuation

v represents the local state li of agent i, therefore the set enabledi(v) corresponds

to Algorithm 7, line 7. It then proceeds to determine which action ai ∈ Acti can

be included in Pri(li). This is done by finding the corresponding action of agent i

with respect to exec(g, v), where g ∈ enabled(v). Let v1
a = {p, q} = Π|l(l1a), then we

have enableda(v
1
a) = {g2

a, g
3
a} and agent ma has the set of actions in ISPL shown in

Table 3.1. Thus executing g2
a on v1

a will give p the valuation true, whereas executing g3
a

on v1
a will give p the valuation false, hence exec(g2

a, v
1
a) = {p, q} and exec(g3

a, v
1
a) = {q}.

Notice that enableda(v
1
a) corresponds to a1

a and exec(g3
a, v

1
a) to a2

a (Algorithm 7, line

15). Therefore we put both a1
a and a2

a into Pra(l
1
a) (see Algorithm 7, line 17) and

have Pra(l
1
a) = {a1

a, a
2
a}. Applying the technique above for each valuation va (which

corresponds to local state la), agent ma protocol function is complete as shown in

Table 3.2.

Example 6. Let Φ = {p, q} be a set of Boolean variables and consider the SRML

arena A = ({a, b}, {p, q},ma,mb). The specification of ma and mb is as follows:

module ma controls p module mb controls q
init init
:: >; p′ := >; (g1

a) :: >; q′ := ⊥; (g1
b)

update update
:: p ∨ q ; p′ := >; (g2

a) :: p ∧ ¬q ; q′ := p; (g2
b)

:: q ; p′ := ¬p; (g3
a) :: p↔ q ; q′ := ¬q; (g3

b)

Thus, we have

66

enableda({p, q}) = {g2
a, g

3
a} enabledb({p, q}) = {g3

b}
enableda({p}) = {g2

a} enabledb({p}) = {g2
b}

enableda({q}) = {g2
a, g

3
a} enabledb({q}) = {gskipb }

enableda({}) = {gskipa } enabledb({}) = {g3
b}

name assignment

a1
a p := >
a2
a p := ⊥

Table 3.1: The set of actions of agent ma in ISPL.

local state valuation protocol

l1a {p, q} Pra(l
1
a) = {a1

a, a
2
a}

l2a {p} Pra(l
2
a) = {a1

a}
l3a {q} Pra(l

3
a) = {a1

a}
l4a {} Pra(l

4
a) = {}

Table 3.2: The protocol function of agent ma.

To implement gskipi we observe that such a guarded command can be implemented

by setting the variables in Φi to have the same valuations as in the previous step.

Thus, implicitly we have the following update guarded command

gskipi : ϕ; x′1 := x1, . . . , x
′
k := xk;

where Φi = {x1, . . . , xk}. That is, for every SRML module mi = (Φi, Ii, Ui) that we

want to map into an agent i = (Li, Acti, P ri, ti) in ISPL, for each v ∈ V , if enabled(v)

is empty, then it is equivalent that agent i executes ai ∈ Acti such that ti(li, ai) = {li}.
Based on this observation, we then designed Algorithm 8 to implement this feature.

It is straightforward that by using the technique presented in Section 3.4.1, the

private variables inside the Vars tag can capture all possible valuations of the variables

controlled by mi = (Φi, Ii, Ui). The perfect information setting can be simulated using

the technique presented in Section 3.4.2. The non-deterministic initialisation of the

variables in Φ can be captured using the technique in Section 3.4.3. We can use the

last statement as our basis for inductively build an IS M from the SRML game G. Let

KA be the Kripke structure induced by A ∈ G, KM the Kripke structure induced by

M , ρA ∈ Paths(KA), and ρM ∈ Paths(KM). Assume that at a given time-step j = k,

π(ρA[j]) = Π(ρM [j]). Since at any given time-step j each of agent i ∈ N,N ∈M acts

67

Algorithm 8 Implement gskip

1: function gskip(Pri)
2: for each Pri(li) ∈ Pri do
3: if Pri(li) = ∅ then
4: find ai ∈ Acti such that ti(li, ai) = {li};
5: Pri(li) := ai;
6: end if
7: end for
8: return Pri;
9: end function

according to the behaviour of each of module mi ∈ N,N ∈ G, then for j = k + 1, we

also have π(ρA[j]) = Π(ρM [j]). Thus, given an SRML arena A = (N,Φ,m1, . . . ,mn),

we can construct an IS M = (N, I,Π) such that for every LTL formula ϕ, we have

KA |= ϕ if and only if KM |= ϕ, where KA is the Kripke structure induced by A and

KM is the one induced by M .

Let σAi be a strategy of module mi = (Φi, Ii, Ui) in arena A = (N,Φ,m1, . . . ,mn),

and σMi a strategy of mapped agent i in ISM = (N, I,Π). We now define a congruence

relation ∼= over strategies σAi and σMi by σAi
∼= σMi if and only if for every v ∈ V and

for every li ∈ g such that v = Π|l(li), we have σi(v) = Π|l(ti(li, ai)), ai ∈ σMi (li). We

then extend the congruence relation to strategy profiles. We say that two strategy

profiles ~σA and ~σM are congruent by ~σA ∼= ~σM if and only if for every mi ∈ N, N ∈ A
and for every i ∈ N, N ∈M , we have σAi

∼= σMi .

Let G = (A, γ1, . . . , γn) be a LTL RMG, IS M = (N, I,Π) a system constructed

from A with γi be the goal of agent i ∈ N, ~σA the strategy profile of the game G with

the arena A, and ~σM the strategy profile of the IS M . It follows that, if ~σA ∼= ~σM

then ~σA |= γi if and only if ~σM |= γi.

3.5 Solving Rational Verification Problems with

MCMAS

One of the decision problems in rational verification is checking the emptiness of the

set of Nash equilibria. Formally, such a problem can be stated as follows:

Non-Emptiness
Given : Given a game G.
Question : Is it the case that NE(G) 6= ∅?

68

Let N = {1, . . . , n} be the set of players in G, V ar be the set of strategy variables,

and Γ be the set of goals of players in G. Using SL, we can express the existence of

Nash equilibria with the formula ϕNE:

ϕNE = 〈〈x1〉〉(1, x1) . . . 〈〈xn〉〉(n, xn)
∧

i∈N

(
¬γi → [[yi]](i, yi)¬γi

)

where i ∈ N, xi, yi ∈ V ar, γi ∈ Γ3.

Intuitively, formula ϕNE can be explained as follows: for each player i with its

chosen strategy xi in a game G, if the goal of i cannot be achieved using strategy

xi then for every “alternative” strategy yi, the goal of player i cannot be achieved.

This means that, players who do not get their goals achieved cannot benefit from

unilaterally changing their strategies. Thus, if ϕNE is true in G, then there exists a

Nash equilibrium in the game.

The other problems of rational verification, namely E-Nash and A-Nash, can

be reduced to Non-emptiness [Gao et al., 2017]. The reduction is straightforward

and involves an addition of two extra players. The construction from E-Nash to

Non-emptiness is as follows. Given a game G and a property ϕ, build a new game

H by adding two more players, say n + 1 and n + 2, with goals γn+1 = ϕ ∨ (p ↔ q)

and γn+2 = ϕ ∨ ¬(p ↔ q), where Φn+1 = {p} and Φn+2 = {q} for two fresh Boolean

variables p and q. With such construction, it is the case that the answer to the E-

Nash problem of game G and property ϕ is a “yes” if, and only if, the answer to

the Non-emptiness problem of H is a “yes” [Gao et al., 2017]. For A-Nash, it is

straightforward, since it is (logically) the dual of E-Nash.

3.6 Summary

In this chapter, a technique for translating RMGs modelled in SRML code into MC-

MAS’s dedicated language ISPL in order to perform equilibrium analysis on the games

is presented. The technique has been implemented in SEVIA (SRML Games Equilib-

rium Verification via ISPL Analysis)4. At this point, it is important to point out that

this approach only solves the Non-emptiness problem under imperfect recall strate-

gies setting, since (full) SL with perfect recall strategies is currently not supported by

3This characterisation of the existence of Nash equilibria using SL has been done in the literature,
e.g., in [Gao et al., 2017].

4It can be used online from: http://eve.cs.ox.ac.uk/sevia.html. The source code is also
available from: https://github.com/eve-mas/sevia.

69

http://eve.cs.ox.ac.uk/sevia.html
https://github.com/eve-mas/sevia

MCMAS5. Moreover, although MCMAS supports the analysis of games with imper-

fect information and non-uniform strategies, in this thesis we only look at games with

perfect information and uniform strategies. Indeed, in this thesis we only consider an

extension of MCMAS called MCMAS-SLK, whose (SL) semantics defined on uniform

memoryless strategies. Later in Section 7.4.2, we will see a concrete example of how

imperfect recall setting affects the result of an analysis of some system.

5Full SL is implemented in an extension of MCMAS called MCMAS-SLK[Cermák et al.,
2014, Cermák et al., 2018]. However, MCMAS-SLK only supports imperfect recall strategies, since
games with more than two players, perfect recall strategies, and imperfect information, give rise to
undecidable problems [Gutierrez et al., 2018b].

70

Chapter 4

Parity Games for Rational
Verification and Synthesis

This chapter presents a novel and simpler technique for checking the existence of Nash

equilibria in games where players have goals given by LTL formulae. In particular,

the technique described in this chapter does not rely on the solution of an alternating

parity tree automaton. Instead, it reduces the problem to the solution of a parity

game [Emerson and Jutla, 1991]. In the next section some preliminary definitions are

given. In Section 4.1 the overall algorithm is outlined. In Section 4.2 the translation

from a game with LTL goals to a parity game is presented. Section 4.3 provides a

characterisation of the set of Nash equilibria within the parity game representation

previously obtained, while Section 4.4 shows how to check for nonemptiness of such a

set using Streett automata. Section 4.5 provides a way to solve synthesis and verifi-

cation problems via Non-emptiness. Section 4.6 discusses the need and aspiration

for bisimulation-invariant setups.

4.1 Reasoning with Parity Games

We now state the problem that is studied in the rest of this chapter. The problem, as

already mentioned in Section 2.8.1, is called Non-Emptiness and formally defined

as follows:

Given: An LTL Game GLTL.

Question: Is it the case that NE(GLTL) 6= ∅?

As indicated before, we solve both verification and synthesis through a reduction

to the above problem. The technique we develop consists of three steps. First, we

71

build a (deterministic) Parity game GPAR from an input LTL game GLTL1. Then—

using a characterisation of Nash equilibrium (presented later) that separates players

in the game into those that achieve their goals in a Nash equilibrium (the “winners”,

W) and those that do not achieve their goals (the “losers”, L)—for each set of play-

ers in the game, we eliminate nodes and paths in GPAR which cannot be a part of

a Nash equilibrium, thus producing a modified Parity game, G−LPAR. Finally, in the

third step, we use Streett automata on infinite words to check if the obtained Parity

game witnesses the existence of a Nash equilibrium. The overall algorithm is pre-

sented in Algorithm 9 which also includes some comments pointing to the relevant

Sections/Theorems. The first step is contained in line 3, while the third step is in

lines 12–14. The rest of the algorithm is concerned with the second step. In the

sections that follow, we will describe each step of the algorithm and, in particular,

what are and how to compute Punj(GPAR) and G−LPAR, two key constructions used in

our decision procedure. At this point, it is important to note that in Algorithm 9, it

is implicitly assumed that the set W is not an empty set, since in that case, checking

the existence of Nash equilibrium is trivial—we need only to check whether G−LPAR is

empty of not, since all infinite runs in it are Nash equilibrium runs. We choose not

to incorporate this trivial case in order to avoid clutter.

Algorithm 9 Nash equilibrium via Parity games

1: input: An LTL game GLTL = (N, (Aci)i∈N, St, s0, tr, λ, (γi)i∈N).
2: output: “Yes” if NE(GLTL) 6= ∅; “No” otherwise.
3: GPAR ⇐= GLTL; . from Section 4.2 (Theorem 8)
4: for each W ⊆ N do
5: for each j ∈ L = N \W do
6: Compute Punj(GPAR); . from Section 4.3 (Theorem 9)
7: end for
8: Compute G−LPAR;
9: for each i ∈ W do

10: Compute Ai and Si from G−LPAR;
11: end for
12: if L(×i∈W (Si)) 6= ∅ then . from Section 4.3 (Theorem 11)
13: return “Yes”
14: end if
15: end for
16: return “No”

1Readers might ask the usage of parity objective in our approach—as opposed to some simpler
ones, such as Büchi. The reason is that, in general, it is not always possible to translate an LTL
formula into a deterministic Büchi automaton.

72

It should be noted that even though we use automata in our algorithm (specifically,

Streett automata to check for the existence of a Nash equilibrium in line 12 of the

algorithm, and parity automata to build a parity game in line 3 of the algorithm),

most reasoning is done at the level of parity games, i.e., in the second step of the

decision procedure.

Complexity. The procedure presented above runs in doubly exponential time,

matching the optimal upper bound of the problem. In the first step we obtain a

doubly exponential blowup. The underlying structure M of the obtained Parity

game GPAR is doubly exponential in the size of the goals of the input LTL game GLTL,

but the priority functions set (αi)i∈N is only (singly) exponential. Then, in the second

step, reasoning takes only polynomial time in the size of the underlying concurrent

game structure of GPAR, but exponential time in both the number of players and the

size of the priority functions set. Finally, the third step takes only polynomial time,

leading to an overall 2EXPTIME complexity.

4.2 LTL Games to Parity Games

We now describe how to realise line 3 of Algorithm 9, and in doing so we prove a

strong correspondence between the set of Nash equilibria of the input LTL game GLTL
and the set of Nash equilibria of its associated Parity game GPAR. This result will

allow us to shift reasoning on the set of Nash equilibria of GLTL into reasoning on

the set of Nash equilibria of GPAR. The basic idea behind this step of the decision

procedure is to transform all LTL goals (γi)i∈N in GLTL into a collection of DPWs,

denoted by (Aγi)i∈N, that will be used to build the underlying CGS of GPAR. We

construct GPAR as follows.

In general, using the results in [Sistla et al., 1987, Piterman, 2007], from any

LTL formula ϕ over AP one can build a DPW Aϕ = (2AP, Q, q0, ρ, α) such that,

L(Aϕ) = {π ∈ (2AP)ω : π |= ϕ}, that is, the language accepted by Aϕ is exactly the

set of words over 2AP that are models of ϕ. The size of Q is doubly exponential in |AP|
and the size of the range of α is singly exponential in |AP|. Using this construction

we can define, for each LTL goal γi, a DPW Aγi .

Definition 26. Let GLTL = (M, (γi)i∈N) be an LTL game whose underlying CGS is

M = (N, (Aci)i∈N, St, s0, tr, λ). Moreover, let Aγi = (2AP, Qi, q
0
i , ρi, αi) be the DPW

corresponding to player i’s goal γi in GLTL. The Parity game GPAR associated to GLTL is

73

the game GPAR = (M′, (α′i)i∈N), where M′ = (N, (Aci)i∈N, St′, s′0, tr
′
, λ) and (α′i)i∈N

are as follows:

• St′ = St××i∈N
Qi and s′0 = (s0, q

0
1, . . . , q

0
n);

• for each state (s, q1, . . . , qn) ∈ St′ and action profile ~a,

tr′((s, q1, . . . , qn),~a) = (tr(s,~a), ρ1(q1, λ(s)), . . . , ρn(qn, λ(s));

• α′i(s, q1, . . . qn) = αi(qi).

Intuitively, the game GPAR is the product of the LTL game GLTL and the collection of

parity word automata Aγi that recognise the models of each player’s goal. Informally,

the game executes in parallel the original LTL game together with the automata built

on top of the LTL goals. At every step of the game, the first component of the product

state follows the transition function of the original game GLTL, while the “automata”

components are updated according to the labelling of the current state of GLTL. As

a result, the execution in GPAR is made, component by component, by the original

execution, say π, in the LTL game GLTL, paired with the unique runs of the DPWs

Aγi generated when reading the word λ(π).

Observe that in the translation from GLTL to its associated GPAR the set of actions

for each player is unchanged. This, in turn, means that the set of strategies in both

GLTL and GPAR is the same, since for every state s ∈ St and action profile ~a, it follows

that ~a is available in s if and only if it is available in (s, q1, . . . , qn) ∈ St′, for all

(q1, . . . , qn) ∈×i∈N
Qi. Using this correspondence between strategies in GLTL and

strategies in GPAR, we can prove the following Lemma, which states an invariance

result between GLTL and GPAR with respect to the satisfaction of players’ goals.

Lemma 2 (Goals satisfaction invariance). Let GLTL be an LTL game and GPAR its

associated parity game. Then, for every strategy profile ~σ and player i, it is the case

that π(~σ) |= γi in GLTL if and only if π(~σ) |= αi in GPAR.

Proof. We prove the statement by double implication. To show the left to right

implication, assume that π(~σ) |= γi in GLTL, for any player i ∈ N, and let π denote

the infinite path generated by ~σ in GLTL; thus, we have that λ(π) |= γi. On the other

hand, let π′ denote the infinite path generated in GPAR by the same strategy profile ~σ.

Observe that the first component of π′ is exactly π. Moreover, consider the (i+ 1)-th

component ρi of π′. By the definition of GPAR, it holds that ρi is the run executed

by the automaton Aγi when the word λ(π) is read. By the definition of the labelling

function of GPAR, it holds that the parity of π′ according to α′i corresponds to the one

74

recognised by Aγi in ρi. Thus, since we know that λ(π) |= γi, it follows that ρi is

accepting in Aγi and therefore π′ |= αi, which implies that π(~σ) |= αi in GPAR.

For the right to left direction, observe that all implications used above are equiv-

alences. Thus, using such equivalences we can reason backwards to prove the state-

ment.

Using Lemma 2 we can then show that the set of Nash Equilibria for any LTL

game exactly corresponds to the set of Nash equilibria of its associated Parity game.

Formally, we have the following invariance result between games.

Theorem 8. Let GLTL be an LTL game and GPAR its associated Parity game. Then,

it is the case that NE(GLTL) = NE(GPAR).

Proof. The proof proceeds by double inclusion. First, assume that a strategy pro-

file ~σ ∈ NE(GLTL) is a Nash Equilibrium in GLTL and, by contradiction, it is not a Nash

Equilibrium in GPAR. Observe that, due to Lemma 2, we know that the set of players

that get their goals satisfied by π(~σ) in GLTL (the “winners”, W) is the same set of play-

ers that get their goals satisfied by π(~σ) in GPAR. Then, there is player j ∈ L = N\W
and a strategy σ′j such that π((~σ−j, σ′j)) |= αj in GPAR. Then, due to Lemma 2, we

have that π((~σ−j, σ′j)) |= γj in GLTL and so σ′j would be a beneficial deviation for

player j in GLTL too—a contradiction. On the other hand, for every ~σ ∈ NE(GPAR),

we can reason in a symmetric way and conclude that ~σ ∈ NE(GLTL).

4.3 Nash Equilibria Characterisation

Thanks to Theorem 8, we can focus our attention on Parity games, since a technique

for solving such games will also provide a technique for solving their associated LTL

games. To do this we will characterise the set of Nash equilibria in the Parity game

construction GPAR in our algorithm.

The existence of Nash Equilibria in LTL games can be characterised in terms of

punishment strategies and memoryful reasoning [Gutierrez et al., 2015a]. We will

show that a similar characterisation can be shown here in a parity games framework,

where only memoryless reasoning is required. To do this, we first introduce the notion

of punishment strategies and regions formally, as well as some useful definitions and

notations.

In what follows, given a memoryless strategy profile ~σ = (σ1, . . . , σn) defined on

a state s ∈ St of a Parity game GPAR, that is, such that s0
i = s for every i ∈ N, we

75

write GPAR, ~σ, s |= αi if π(~σ) |= αi in GPAR. Moreover, if s = s0 is the initial state of

the game, we omit it and simply write GPAR, ~σ |= αi in such a case.

Definition 27 (Punishment strategies and regions). For a Parity game GPAR and a

player i ∈ N, we say that ~σ−i is a punishment strategy profile against i in a state s

if, for all strategies σ′i ∈ Σi, it is the case that GPAR, (~σ−i, σ′i), s 6|= αi. A state s

is punishing for i if there exists a punishment strategy profile against i in s. By

Puni(GPAR) we denote the set of punishing states, the punishment region, for i in

GPAR.

To better understand the meaning of a punishment strategy profile, it is useful to

think of a modification of the game GPAR, in which player i still has its goal αi, while

the rest of the players are collectively playing in an adversarial mode, i.e., trying to

make sure that player i does not achieve αi. This scenario is formally represented by a

two-player zero-sum game, in which the winning strategies of the (coalition) players,

denoted by −i, correspond (one-to-one) to the punishment strategies in the original

game GPAR. As described in [Gutierrez et al., 2015a], knowing the set of punishment

strategy profiles in a given game is important to compute its set of Nash Equilibria.

For this reason, it is useful to compute the set Puni(GPAR), that is, the set of states

in the game from which a given player i can be punished (e.g., to deter undesirable

unilateral player deviations). To do this, we reduce the problem to computing a

winning strategy in a turn-based two-player zero-sum parity game, whose definition

is as follows.

Definition 28. For a concurrent multi-player Parity game

GPAR = (N, St, (Aci)i∈N, s0, tr, (αi)i∈N)2

and player j ∈ N, the sequentialisation of GPAR with respect to player j is the (turn-

based two-player) parity game GjPAR = (V0, V1,E , α) where

• V0 = St and V1 = St× ~Ac−j;

• E = {(s, (s,~a−j)) ∈ St× (St× ~Ac−j)} ∪ {((s,~a−j), s′) ∈ (St× ~Ac−j)× St :

∃a′j ∈ Acj. s
′ = tr(s, (~a−j, a′j))};

• α : V0 ∪ V1 → N is such that

α(s) = αj(s) + 1 and α(s,~a−j) = αj(s) + 1.

76

s1 s2(~a−j, aj) s1 (s1,~a−j) s2

Figure 4.1: Sequentialisation of a game. On the left hand side, a representation of a
transition from s1 to s2 using action profile (~a−j, aj). On the right hand side, the two
states s1 and s2 have been assigned to Player 0 in the parity game, which have been
interleaved with a state of Player 1 corresponding to the choice of ~a−j by coalition
−j in the original game.

The connection between the notion of punishment in GPAR and the set of winning

strategies in GiPAR is established in the following theorem, where by Win0(GjPAR) we

denote the winning region of Player 0 in GjPAR, that is, the states from which Player 0,

representing the set of players −j = N \ {j}, has a (memoryless) winning strategy in

the parity game GjPAR.

Theorem 9. For all states s ∈ St, it is the case that s ∈ Punj(GPAR) if and only if

s ∈Win0(GjPAR). In other words, it holds that Punj(GPAR) = Win0(GjPAR) ∩ St.

Proof. The proof goes by double inclusion. From left to right, assume s ∈ Punj(GPAR)

and let ~σ−j be a punishment strategy profile against player j in s, i.e., such that

GPAR, (~σ−j, σ′j), s 6|= αj, for every strategy σ′j ∈ Σj of player j. We now define a

strategy σ0 for player 0 in GjPAR that is winning in s. In order to do this, first observe

that, for every finite path π′≤k ∈ V ∗ · V0 in GjPAR starting from s, there is a unique

finite sequence of action profiles ~a0
−j, . . . ,~a

k
−j and a sequence π≤k = s0, . . . , sk+1 of

states in St∗ such that

π′≤k = s0, (s0,~a0
−j), . . . , s

k, (sk,~ak−j), . . . , s
k+1 .

Now, for every path π′≤k of this form that is consistent with ~σ−j, i.e., the sequence

~a0
−j, . . . ,~a

k−1
−j is generated by ~σ−j, define σ0(π′≤k) = (sk+1,~ak+1

−j), where ~ak+1
−j is the

action profile selected by ~σ−j. To prove that σ0 is winning, consider a strategy σ1 for

Player 1 and the infinite path π′ = π((σ0, σ1)) generated by (σ0, σ1). It is not hard

to see that the sequence π′odd of odd positions in π′ belongs to a path π in GPAR and

it is compatible with ~σ−j. Thus, since ~σ−j is a punishment strategy, π′odd does not

satisfy αj. Moreover, observe that the parity of the sequence π′even of even positions

equals that of π′odd. Thus, we have that Inf(α(π′)) = Inf(α(π′odd)) ∪ Inf(α(π′even)) =

Inf(αj(π)) + 1 and so π′ is winning for player 0 in GjPAR and σ0 is a winning strategy.

2We omit the labelling function λ to avoid clutter, since it is not used here.

77

From right to left, let s ∈ St ∩ Win0(GjPAR) and let σ0 be a winning strat-

egy for Player 0 in GjPAR, and assume σ0 is memoryless. Now, for every player i,

with i 6= j, define the memoryless strategy σi in GPAR such that, for every s′ ∈ St, if

σ0(s′) = (s′,~a−j), then σi(s
′) = (~a−j)i 3, i.e., the action that player i takes in σ0 at s′.

Now, consider the (memoryless) strategy profile ~σ−j given by the composition of all

strategies σi, and consider a play π in GPAR, starting from s, that is compatible with

~σ−j. Thus, there exists a play π′ in GjPAR, compatible with σ0, such that π = π′odd.

Moreover, since π′odd = π′even, we have that Inf(α(π′)) = Inf(α(π′odd))∪ Inf(α(π′even)) =

Inf(αj(π)) + 1. Since π′ is winning for Player 0, we know that π 6|= αj and so ~σ−j is

a punishment strategy against Player j in s.

Definition 28 and Theorem 9 not only make a bridge from the notion of punishment

strategy to the notion of winning strategy for two-player zero-sum games, but also

provide a way to understand how to compute punishment regions as well as how to

synthesise an actual punishment strategy in multi-player parity games. In this way,

by computing winning regions and winning strategies in these games we can solve the

synthesis problem for individual players in the original game with LTL goals, one of

the problems we are interested in. Thus, from Definition 28 and Theorem 9, we have

the following corollary.

Corollary 10. Computing Punj(GPAR) can be done in polynomial time with respect

to the size of the underlying graph of the game GPAR and exponential in the size of

the priority function αj, that is, to the size of the range of αj. Moreover, there is

a memoryless strategy ~σj that is a punishment against player j in every state s ∈
Punj(GPAR).

As described in [Gutierrez et al., 2015a], in any (infinite) run sustained by a Nash

equilibrium ~σ in deterministic and pure strategies, that is, in π(~σ), it is the case that

all players that do not get their goals achieved in π(~σ) can deviate from such a (Nash

equilibrium) run only to states where they can be punished by the coalition consisting

of all other players in the game. To formalise this idea in the present setting, we need

one more concept about punishments, defined next.

Definition 29. An action profile run η = ~a0,~a1, . . . ∈ ~Ac
ω

is punishing-secure in s

for player j if, for all k ∈ N and a′j, it holds that tr(πj, ((~ak)−j, a′j)) ∈ Punj(GPAR),

where π is the only play in GPAR starting from s and generated by η.

3By an abuse of notation, we let σi(s
′) be the value of τi(s

′).

78

s0 s1 . . . sk sk+1

s′

. . .

. . .

~a0 ~a1 ~ak−1 ~ak

((~ak)−j, a′j)

σpunji

~ak+1

Figure 4.2: Representation of the strategy σi. At the beginning of the execution,
player i starts following the transducer Tη that generates the action profile run η.
The strategy adheres to it until a unilateral deviation from player j occurs, here
represented at the k-th step of the play. Once the deviation has occurred, and the
game entered a state s′, player i starts executing the strategy σpunji , to employ the
punishment strategy against the deviating player j.

Using the above definition, we can characterise the set of Nash equilibria of a given

game. Since strategies are formalised as transducers, i.e., as finite state machines with

output, such Nash equilibria strategy profiles produce a set of runs which contains

ultimately periodic runs, that is, runs which are the concatenation of a finite prefix

with an infinite suffix consisting of a finite sequence that repeats itself infinitely often4.

Furthermore, since in every run π there are players who get their goals achieved in

π—the players whose minimum priorities that occur infinitely often in π are even—

(and therefore do not have an incentive to deviate from π) and players who do not get

their goals achieved in π—the players whose minimum priorities that occur infinitely

often in π are odd—(and therefore may have an incentive to deviate from π), we will

also want to explicitly refer to such players. To do that, the following notation will

be useful: Let W (GPAR, ~σ) = {i ∈ N : GPAR, ~σ |= αi} denote the set of player that get

their goals achieved in π(~σ). We also write W (GPAR, π) = {i ∈ N : GPAR, π |= αi}.

Theorem 11 (Nash Equilibrium Characterisation). For a parity game GPAR, there is

a Nash Equilibrium strategy profile ~σ ∈ NE(GPAR) if and only if there is an ultimately

periodic action profile run η such that, for all players j ∈ L = N \W (GPAR, π), the

run η is punishing-secure against j in state s0, where π is the unique path generated

by η from s0.

Proof. The proof is by double implication. From left to right, for ~σ ∈ NE(GPAR), let

η be the ultimately periodic sequence of action profiles generated by ~σ. Moreover,

4There are Büchi-recognisable languages that contain words which are not ultimately periodic.
However, every such a language contains an ultimately periodic word. Indeed, given the goals of play-
ers expressed in LTL, strategies that produce ultimately periodic runs are sufficient (see [Gutierrez
et al., 2015b], Lemma 1).

79

assume for a contradiction that η is not punishing-secure for some j ∈ L. By the

definition of punishment-secure, there is k ∈ N and action a′j ∈ Acj for player j such

that s′ = tr(πk, ((~ak)−j, a′j) /∈ Punj(GPAR). Now, consider the strategy σ′j that follows

η up to the (k−1)-th step, executes action a′j on step k to get into state s′, and applies

a strategy that achieves αj from that point onwards. Note that such a strategy is

guaranteed to exist since s′ /∈ Punj(GPAR). Therefore, GPAR, (~σ−j, σ′j) |= αj and so σ′j
is a beneficial deviation for player j, a contradiction to ~σ being a Nash equilibrium.

From right to left, we need to define a Nash equilibrium ~σ assuming only the

existence of η. First, recall that η can be generated by a finite transducer Tη =

(Qη, q
0
η, δη, τη) where δη : Qη → Qη and τη : Qη → ~Ac. Moreover, for every player i

and deviating player j, with i 6= j, there is a (memoryless) strategy σpunji to punish

player j in every state in Punj(GPAR). By suitably combining the transducer with the

punishment strategies, we define the following strategy σi = (Qi, q
0
i , δi, τi) for player i

where

• Qi = St×Qη × (L ∪ {>}) and q0
i = (s0, q0

η,>);

• δi = Qi × ~Ac→ Qi is such that

– δi((s, q,>),~a) = (tr(s,~a), δη(q),>), if a = τη(q), and

– δi((s, q,>),~a) = (tr(s,~a), δη(q), j), if both

a−j = (τη(q))−j and ~aj 6= (τη(q))j;

• τi : Qi → Aci is such that

– τi(s, q,>) = (τη(q))i, and

– τi(s, q, j) = σpunji (s).

To understand how strategy σi works, observe that its set of internal states is given

by the following triple. The first component is a state of the game, remembering

the position of the execution. The second component is a state of the transducer

Tη, which is used to employ the execution of the action profile run η. The third

component is either the symbol >, used to flag that no deviation has occurred, or the

name of a losing player j, used to remember that such a player has deviated from η.

At the beginning of the play, strategy σi starts executing the actions prescribed by

the transducer Tη. It sticks to it until some losing player j performs a deviation. In

such a case, the third component of the internal state of σi switches to remember the

deviating player. Moreover, from that point on, it starts executing the punishment

80

strategy σpunji . Now, define σ to be the collection of all σi. It remains to prove that

~σ is a Nash Equilibrium.

First, observe that since ~σ produces exactly η, we have W (GPAR, ~σ) = W (GPAR, η),

that is, the players that get their goals achieved in π(~σ) and η are the same. Thus,

only players in L could have a beneficial deviation. Now, consider a player j ∈ L

and a strategy σ′j and let k ∈ N be the minimum (first) step where σ′j produces

an outcome that differs from σj when executed along with ~σ−j. We write π′ for

π((~σ−j, σ′j)). Thus, we have πh = π′h for all h ≤ k and πk+1 6= π′k+1. Hence π′k+1 =

tr(π′k, (ηk)−j, a
′
j) = tr(πk, (ηk)−j, a′j) ∈ Punj(GPAR) and GPAR, (~σ−j, σ′j) 6|= αj, since σ−j

is a punishment strategy from π′k+1. Thus, there is no beneficial deviation for j and

~σ is a Nash equilibrium.

4.4 Finding Nash Equilibria

Theorem 11 allows us to reduce the problem of finding a Nash equilibrium to finding

a path in the game satisfying certain properties, which we will show how to check

using DPW and DSW automata. To do this, let us fix a given set W ⊆ N of players

in a given game GPAR, which are assumed to get their goals achieved. Now, due to

Theorem 11, we have that an action profile run η corresponds to a Nash equilibrium

with W being the set of “winners” in the game if, and only if, the following two

properties are satisfied:

• η is punishment-secure for j in s0, for all j ∈ L = N \W ;

• GPAR, π |= αi, for every i ∈ W ;

where π is, as usual, the path generated by η from s0.

To check the existence of such η, we have to check these two properties. First,

note that, for η to be punishment-secure for every losing player j ∈ L, the game

has to remain in the punishment region of each j. This means that an acceptable

action profile run needs to generate a path that is, at every step, contained in the

intersection
⋂
j∈L Punj(GPAR). Thus, to find a Nash equilibrium, we can remove all

states not in such an intersection. We also need to remove some edges from the game.

Indeed, consider a state s and a partial action profile ~a−j. It might be the case that

tr(s, (~a−j, a′j)) /∈ Punj(GPAR), for some a′j ∈ Acj. Therefore, an action profile run

that executes the partial profile ~a−j over s cannot be punishment-secure, and so all

outgoing edges from (s,~a−j), can also be removed. After doing this for every j ∈ L,

we obtain G−LPAR, the game resulting from GPAR after the removal of the states and

81

edges just described. As a consequence, G−LPAR has all and only the paths that can be

generated by an action profile run that is punishment-secure for every j ∈ L.

The only thing that remains to be done is to check whether there exists a path in

G−LPAR that satisfies all players in W . To do this, we use DPW and DSW automata.

Since players goals are parity conditions, a path satisfying player i is an accepting

run of the (one-letter) DPW Ai where the set of states and transitions are exactly

those of G−LPAR and the acceptance condition is given by αi. Then, in order to find a

path satisfying the goals of all players in W , we can solve the emptiness problem of

the automaton intersection×i∈W Ai. To do this, we can see each Ai as a DSW Si
in the usual way (parity conditions are a special case of Streett [Kupferman, 2018]).

Since Streett automata are closed under conjunctions of Streett conditions,×i∈W Ai
translates to a DSW automaton that can be solved in polynomial time [Kupferman,

2018]. Finally, as we fixed W at the beginning, all we need to do is to use the procedure

just described for each W ⊆ N, if needed (see Algorithm 9), obtaining an optimal

decision procedure that has only exponential time and polynomial space complexity

in |N|, the number of agents in the system.5

4.5 Synthesis and Verification

We now show how to solve the synthesis and verification problems using Non-

Emptiness. For synthesis, the solution is already contained in the proof of The-

orem 11. Note that, in the computation of punishing regions, the algorithm builds,

for every player i and potential deviator j, a (memoryless) strategy that player i

can play in the collective strategy profile ~σ−j in order to punish player j, should

player j wishes to deviate. If a Nash equilibrium exists, the algorithm also computes

an ultimately periodic witness of it, that is, a computation π in G, that, in particular,

satisfies the goals of players in W . At this point, using this information, we are able to

define a strategy σi for each player i ∈ N in the game (i.e., including those not in W),

as follows: while no deviation occurs, play the action that contributes to generate π,

and if a deviation of player j occurs, then play the (memoryless) strategy σpunji that is

defined in the game to punish player j in case j were to deviate. Notice, in addition,

that because of Lemma 2 and Theorem 8, every strategy for player i in the game

with parity goals is also a valid strategy for player i in the game with LTL goals,

and that such a strategy, being bisimulation-invariant, is also a strategy for every

5Some previous techniques, e.g. [Bouyer et al., 2015a], to the computation of pure Nash equilibria
are not optimal as they have exponential space complexity in the number of players |N|.

82

possible bisimilar representation of player i. In this way, our technique can also solve

the synthesis problem for every player, that is, can compute individual bisimulation-

invariant strategies for every player (system component) in the original multi-player

game (concurrent system).

For verification, one can use a reduction of the following two problems, called

E-Nash and A-Nash in [Gutierrez et al., 2015b, Wooldridge et al., 2016, Gutierrez

et al., 2017b], to Non-Emptiness.

Given: Game GLTL, LTL formula ϕ.

E-Nash: Is it the case that π(~σ) |= ϕ, for some ~σ ∈ NE(GLTL) ?

A-Nash: Is it the case that π(~σ) |= ϕ, for all ~σ ∈ NE(GLTL) ?

We write (GLTL, ϕ) ∈ E-Nash to denote that (GLTL, ϕ) is an instance of E-Nash, i.e.,

given a game GLTL and a LTL formula ϕ, the answer to E-Nash problem is a “yes”;

and, similarly for A-Nash.

Because we are working on a bisimulation-invariant setting, we can ensure some-

thing even stronger: that for any two games GLTL and G ′LTL, whose underlying CGSs

areM andM′, respectively, we know that ifM is bisimilar toM′, then (GLTL, ϕ) ∈
E-Nash if and only if (G ′LTL, ϕ) ∈ E-Nash, for all LTL formulae ϕ; and, similarly for

A-Nash, as desired.

In order to solve E-Nash and A-Nash via Non-Emptiness, one could use the

following result, whose proof is a simple adaptation of the same result for iterated

Boolean games [Gutierrez et al., 2015b] and for multi-player games with LTL goals

modelled using SRML [Gutierrez et al., 2017b], which was first presented in [Gao

et al., 2017].

Proposition 1 ([Gao et al., 2017]). Let G be a game and ϕ be an LTL formula.

There is a game H of constant size in G, such that NE(H) 6= ∅ if and only if ∃~σ ∈
NE(G). π(~σ) |= ϕ .

However, since we have Algorithm 9 at our disposal, an easier—and more direct—

solution can be obtained. To solve E-Nash we can modify line 12 of Algorithm 9 to

include the restriction that such an algorithm, which now receives ϕ as a parameter,

returns “Yes” in line 13 if and only if ϕ is satisfied in some run in the set of Nash

equilibrium witnesses. The new line 12 is “if L(×i∈W (Si) × Sϕ) 6= ∅”, where Sϕ is

the DSW automaton representing ϕ. All complexities remain the same; the modified

algorithm for E-Nash is denoted as Algorithm 9’. We can then use Algorithm 9’

to solve A-Nash, also as described in [Gao et al., 2017]: essentially, we can check

83

whether Algorithm 9’(GLTL,¬ϕ) returns “No” in line 16. If it does, then no Nash

equilibrium of GLTL satisfies ¬ϕ, either because no Nash equilibrium exists at all

(thus, A-Nash is vacuously true) or because all Nash equilibria of GLTL satisfy ϕ, then

solving A-Nash positively. Note that in this case, since A-Nash is solved positively

when the algorithm returns “No” in line 16, then no specific Nash equilibrium strategy

profile is synthesised, as expected. However, if the algorithm returns “Yes”, that is,

the case when the answer to A-Nash problem with (GLTL, ϕ) instance is negative, then

a strategy profile is synthesised from Algorithm 9’ which corresponds to a counter-

example for (GLTL, ϕ) ∈ A-Nash. It should be easy to see that implementing E-Nash

and A-Nash is straightforward from Algorithm 9. Also, as already known, it is also

easy to see that Algorithm 9’ solves Non-Emptiness if and only if (GLTL,>) ∈
E-Nash.

4.6 The Role of Bisimilarity

One crucial aspect of our approach to rational verification and synthesis is the role

of bisimilarity [Milner, 1980, Hennessy and Milner, 1985, De Nicola and Vaandrager,

1995, van Glabbeek and Weijland, 1996]. Bisimulation is the most important type

of behavioural equivalence relation considered in computer science, and in particular

two bisimilar systems will satisfy the same temporal logic properties.

In our setting, it is highly desirable that properties which hold in equilibrium are

sustained across all bisimilar systems to P1, . . . , Pn. That is, that for every (temporal

logic) property ϕ and every system component P ′i modelled as an agent in a multi-

player game, if P ′i is bisimilar to Pi ∈ {P1, . . . , Pn}, then ϕ is satisfied in equilibrium—

that is, on a run induced by some Nash equilibrium of the game—by P1, . . . , Pi, . . . Pn

if and only if is also satisfied in equilibrium by P1, . . . , P
′
i , . . . , Pn, the system in

which Pi is replaced by P ′i , that is, across all bisimilar systems to P1, . . . , Pn. This

property is called invariance under bisimilarity. Unfortunately, as shown in [Gutierrez

et al., 2015a, Gutierrez et al., 2017a], the satisfaction of temporal logic properties

in equilibrium is not invariant under bisimilarity, thus posing a challenge for the

modular and compositional reasoning of concurrent systems, since individual system

components in a concurrent system cannot be replaced by (behaviourally equivalent)

bisimilar ones, while preserving the temporal logic properties that the overall multi-

agent system satisfies in equilibrium.

This is also a problem from a synthesis point of view. Indeed, a strategy for a sys-

tem component Pi may not be a valid strategy for a bisimilar system component P ′i .

84

As a consequence, the problem of building strategies for individual processes in the

concurrent system P1, . . . , Pi, . . . Pn may not, in general, be the same as building

strategies for a bisimilar system P1, . . . , P
′
i , . . . Pn, again, deterring any hope of being

able to do modular reasoning on concurrent and multi-agent systems. These problems

were first identified in [Gutierrez et al., 2015a] and further studied in [Gutierrez et al.,

2017a]. However, no algorithmic solutions to these two problems were presented in

either [Gutierrez et al., 2015a] or [Gutierrez et al., 2017a]. Specifically, in this chap-

ter, bisimilarity was exploited in two ways. Firstly, our construction of punishment

strategies (used in the characterisation of Nash equilibrium given by Theorem 11)

assumes that players have access to the history of choices that other players in the

game have made. As shown in [Gutierrez et al., 2017a, Gutierrez et al., 2019a], with

a model of strategies where this is not the case, the preservation of Nash equilibria

in the game, as well as of temporal logic properties in equilibrium, may not be guar-

anteed. Secondly, the implementation in EVE guarantees that any two games whose

underlying CGSs are bisimilar, and therefore should be regarded as observationally

equivalent from a concurrency point of view, will produce the same answers to the

rational verification and automated synthesis problems.

It is also worth noting that even though bisimilarity is probably the most widely

used behavioural equivalence in concurrency, in the context of multi-agent systems

other relations may be preferred, for instance, equivalence relations that take a de-

tailed account of the independent interactions and behaviour of individual components

in a multi-agent system. In such a setting, “alternating” relations with natural ATL∗

characterisations have been studied [Alur et al., 1998a]. Alternating bisimulation is

very similar to bisimilarity on labelled transition systems [Milner, 1980, Hennessy and

Milner, 1985], only that when defined on CGSs, instead of action profiles (directions)

taken as possible transitions, one allows individual player’s actions, which must be

matched in the bisimulation game. Because of this, it immediately follows that any

alternating bisimulation as defined in [Alur et al., 1998a] is also a bisimilarity as

defined here. Despite having a different formal definition, a simple observation can

be made: Nash equilibria are not preserved by the alternating (bisimulation) equiva-

lence relations in [Alur et al., 1998a] either, which discourages the use of these even

stronger equivalence relations for multi-agent systems. In fact, as discussed in [van

Benthem, 2002], the “right” notion of equivalence for games (which can be indirectly

used as an observationally equivalence between multi-agent systems) and their game

theoretic solution concepts is, undoubtedly, an important and interesting topic of

debate, which deserves to be investigated further.

85

4.7 Summary

The technique developed in this chapter, and its associated implementation (Chapter

7), considers games with LTL goals, deterministic and pure strategies, and dichoto-

mous preferences. In particular, strategies in these games are assumed to be able

to see all players’ actions, leading to a setting where Nash equilibrium is invariant

under bisimilarity [Gutierrez et al., 2017a]. This invariance property, in turn, en-

ables the use of standard verification techniques for temporal logics when reasoning

about (Nash) equilibria. In addition, the games are concurrent and synchronous (at

each round all players make their choices independently and at the same time), with

perfect information, and represented using the Simple Reactive Modules Language

(SRML [van der Hoek et al., 2005]). We do not consider mixed or nondeterminis-

tic strategies, or goals given by branching-time formulae. We also do not allow for

quantitative or probabilistic systems, e.g., such as stochastic games or similar game

models. We note, however, that some of these aspects of our reasoning framework

have been placed to avoid undesirable computational properties. For instance, it is

known that checking for the existence of a Nash equilibrium in multi-player games

like the ones we consider is an undecidable problem if either imperfect information or

(various kinds of) quantitative/probabilistic information is allowed [Gutierrez et al.,

2018b, Ummels and Wojtczak, 2011].

86

Chapter 5

Some Tractable Cases of Rational
Verification

In this chapter we show that the complexity of rational verification can be greatly re-

duced by restricting specifications to GR(1) [Bloem et al., 2012]. While some simpler

goals, like safety and Büchi objectives give rise to tractable problems—P-complete for

determining the existence of a Nash equilibrium [McNaughton, 1993, Bouyer et al.,

2015a]—GR(1) objective is a relatively more interesting specification language, since

it is a fragment of LTL that can represent most response properties of reactive systems.

In what follows, we also provide improved complexity results for rational verification

when considering players’ goals given by mean-payoff utility functions—arguably the

most widely used quantitative objective for agents in concurrent and multiagent sys-

tems. In particular, we show that for a number of relevant settings, rational verifica-

tion can be done in polynomial space or even in polynomial time. Part of this chapter

appeared in the proceedings of IJCAI’19 [Gutierrez et al., 2019d].

5.1 Preliminaries

General Reactivity of rank 1. The language of General Reactivity of rank 1,

denoted GR(1), is the fragment of LTL of formulae written in the following form [Bloem

et al., 2012]:

(GFψ1 ∧ . . . ∧GFψm)→ (GFϕ1 ∧ . . . ∧GFϕn),

where each subformula ψi and ϕi is a Boolean combination of atomic propositions.

87

Mean-Payoff value. For an infinite sequence r ∈ Rω of real numbers, let mp(r) be

the mean-payoff value of r, that is,

mp(r) = lim inf
n→∞

avgn(r)

where, for n ∈ N, we define avgn(r) = 1
n

∑n−1
j=0 rj.

We consider multi-player games with GR(1) and mp goals. A multi-player GR(1)

game is a tuple GGR(1) = (M, (γi)i∈N) where M is a CGS and γi is the GR(1) goal

for player i. A multi-player mp game is a tuple Gmp = (M, (wi)i∈N), where M is a

CGS and wi : St → Z is a function mapping every state of the CGS into an integer

number. When it is clear from the context, we refer to a multi-player GR(1) or mp

game as a game and denote it by G. In any game with CGSM, a path π in A induces

a sequence λ(π) = λ(s0)λ(s1) · · · of sets of atomic propositions; if, in addition, M is

the CGS of an mp game, then, for each player i, the sequence wi(π) = wi(s0)wi(s1) · · ·
of weights is also induced.

For a GR(1) game and a path π in it, the payoff of a player i is payi(π) = 1

if λ(π) |= γi and payi(π) = 0 otherwise. Regarding an mp game, the payoff of

player i is payi(π) = mp(wi(π)). Moreover, for a GR(1) game and a path π, by

W (π) = {i ∈ N : π |= γi} and L(π) = {j ∈ N : π 6|= γj} we denote the set of winners

and losers, respectively, over π, that is, the set of players that get their goal satisfied

and not satisfied, respectively, over π. With an abuse of notation, we sometime denote

W (~σ, s) = W (π(~σ, s)) and L(~σ, s) = L(π(~σ, s)), respectively, the set of winners and

losers over the path generated by strategy profile ~σ when starting the game from s.

Furthermore, we simply write π(~σ) for π(~σ, s0).

Nash equilibrium. Using the payoff functions defined above, we define the concept

of Nash equilibrium [Osborne and Rubinstein, 1994] as usual. For a game G, a strategy

profile ~σ is a Nash equilibrium of G if, for every player i and strategy σ′i ∈ Σi, we have

payi(π(~σ)) ≥ payi(π((~σ−i, σ
′
i))) .

5.2 Decision Problems

In rational verification, a key question is E-Nash, which is concerned with the exis-

tence of a Nash equilibrium that fulfils a given temporal specification ϕ. This problem

can be instantiated in many ways. For instance, in [Gutierrez et al., 2015b], E-Nash

was investigated over iterated Boolean Games with specifications and players’ goals

88

in LTL, and was proved to be 2EXPTIME-complete. Iterated Boolean games is a very

natural framework, but it is computationally intractable.

Motivated by this computational limitation, in this chapter, we study E-Nash

for a number of relevant instantiations of the problem, which we show to have better

computational complexity. In particular, we study cases where

• Specifications ϕ are LTL and players’ goals are GR(1);

• Specifications ϕ are LTL and players have mp goals;

• Both the specification ϕ and the goals are GR(1);

• Specifications ϕ are GR(1) and players have mp goals.

5.3 Games of General Reactivity of Rank 1

As indicated before, we solve GR(1) games in two cases: the first one is when the

specification formula is expressed in LTL, while the goals are in GR(1); the second

one when the specification formula as well as the goals belong to GR(1). First, we

provide a general result about a characterisation of Nash Equilibrium for GR(1) given

in terms of punishments. We first require some notation.

For a GR(1) game G, player j ∈ N, and state s ∈ St, the strategy profile ~σ−j is

punishing for player j in s if π((~σ−j, σ′j), s) 6|= γj, for every possible strategy σ′j of

player j. We say that a state s is punishing for j if there exists a punishing strategy

profile for j on s. Moreover, we denote by Punj(G) the set of punishing states in G.

A pair (s,~a) ∈ St × ~Ac is punishing-secure for player j, if tr(s, (~a−j, a′j)) ∈ Punj(G)

for every action a′j.

Theorem 12. In a given GR(1) game G, there exists a Nash Equilibrium if and only

if there exists an ultimately periodic path π such that, for every k ∈ N, the pair

(sk,~a
k) of the k-th iteration of π is punishing secure for every j ∈ L(π).

Proof. From left to right, let ~σ ∈ NE(G) and π be the ultimately periodic path

generated by ~σ. Assume by contradiction that π is not punishing secure for some

j ∈ N, that is, there is k ∈ N and action a′j such that tr(sk, (~a−j, a′j)
k) /∈ Punj(G).

Thus, j can deviate at sk and satisfy γj, which is a contradiction to ~σ being a Nash

equilibrium. From right to left, recall that π can be generated by a finite transducer,

say T. Moreover, for every losing player j, there is a punishing strategy profile for

j in every s ∈ Punj(G). Combining T with such punishment strategies, we build a

89

profile ~σ that follows the actions prescribed by T, until a losing player j deviates.

In such a case, ~σ would start punishing player j. Observe that GR(1) objectives are

prefix-independent, which is not true for general LTL objectives. That means that

the punishment from the k-th iteration takes effect no matter what prefix π≤k has

been played so far. Thus, there is no beneficial deviation for j and ~σ is a Nash

equilibrium.

At this point, solving E-Nash can be done as follows:

1. Guess a set W ⊆ N of winners;

2. For each player j ∈ L = N \W , a loser in the game, compute its punishment

region Punj(G);

3. Remove from G the states that are not punishing for players j ∈ L and the

edges (s, s′) that are labelled with an action profile ~a such that (s,~a) is not

punishing-secure for some j ∈ L, thus obtaining a game G−L;

4. Check whether there exists an ultimately periodic path π in G−L such that

π |= ϕ ∧∧i∈W γi holds.

The four steps described in the above procedure yield Algorithm 10, which solves

the problem at hand.

Algorithm 10 E-Nash of GR(1) games.

1: input: A game GGR(1) and a specification formula ϕ.
2: for i ∈ N do
3: Compute Puni(G)
4: end for
5: for W ⊆ N do
6: Compute G−L
7: if π |= (ϕ ∧∧i∈W γi) for some π ∈ G−L then
8: return Accept
9: end if

10: end for
11: return Reject

While line 7 requires solving the model checking problem for an LTL formula, which

can be done in polynomial space, line 6 can be done in polynomial time. Line 5, on

the other hand, makes the procedure run in exponential time in the number of players,

but still in polynomial space. We then only need to check line 3: this step can be

done in polynomial time, as we now show.

90

Theorem 13. For a given GR(1) game G over the CGSM = (N,Ac, St, s0, tr, λ) and

a player j ∈ N, computing the winning region Punj(G) of player j can be done in

polynomial time with respect to the size of both G and γj.

Proof. We reduce the problem to computing the winning region of a suitably defined

Streett game of index k = 1, whose complexity is known to be O(mnk+1kk!) [Piterman

and Pnueli, 2006]. Given that in our case we have k = 1, we obtain a polynomial

time algorithm.

Recall that the goal of player j is of the form:

γj =

mj∧

l=1

GFψjl →
nj∧

r=1

GFθjr,

where ψjl ’s and θjr’s are boolean combinations of atomic propositions. Then, consider

the CGS M′ = (N,Ac, St′, s′0, tr
′) 1 where

• St′ = St× {0, . . . ,mj} × {0, . . . , nj};

• s′0 = (s0, 0, 0);

• tr′((s, ι1, ι2),~a) = (tr(s,~a), ι′1, ι
′
2) where

ι′1 =

1, if ι1 = 0

ι1, if ι1 6= 0 and s 6|= ψjι1
(ι1 ⊕(mj+1) 1), otherwise

, and

ι′2 =

1, if ι2 = 0

ι2, if ι2 6= 0 and s 6|= θjι2
(ι2 ⊕(nj+1) 1), otherwise

2

Intuitively, CGS M′ mimics the behaviour of M and carries two indexes, ι1 and

ι2. Index ι1 is increased by one every time the path visits a state that satisfies ψjι1
and resets to 0 every time the path visits a state that satisfies ψjmj . Clearly, ι1 is reset

infinitely many times if and only if the path satisfies every ψjl infinitely many times,

and so if and only if it satisfies the temporal specification
∧mj
l=1 GFψjl . The same

argument applies to index ι2, but with respect to the boolean combinations θjr’s.

Now, consider the sets Cj = St×{0}×{0, . . . , nj} and Ej = St×{0, . . . ,mj}×{0}.
Clearly, the Streett pair (Cj, Ej) is satisfied by all and only the paths in M′ that

satisfy γj. Therefore, the winning region of γj can be computed as the winning set of

1We omit the definition of labelling function, as not needed here.
2By ⊕k we denote the addition modulo k.

91

the Streett game of index 1 with (Cj, Ej) being the only Streett pair. As this can be

done in polynomial time, we proved the statement.

Based on Theorem 13, we have the following result.

Corollary 14. The E-Nash problem for GR(1) games with an LTL specification is

PSPACE-complete.

Proof. The upper-bound follows from the procedure described above. Regarding the

lower-bound, note that model-checking an LTL formula ϕ against a Kripke structure

KS can be easily encoded as an instance of E-Nash where G is played over a Kripke

structure KS, taken to be its CGS, players’ goals being tautologies, and the specifi-

cation being ¬ϕ. In such a case, we have that KS |= ϕ if and only if E-Nash for the

pair (G, ϕ) has a negative answer.

Corollary 14 sharply contrasts with the same result in case the goals of the players

are general LTL formulae. In this more general case, E-Nash is 2EXPTIME-complete.

The special case of GR(1) specifications. One of hardest parts of Algorithm 10

is line 7, where an LTL model checking problem has to be solved, making the running

time of the whole procedure exponential in the size of the specification and goals of

the players. As we show in this section, a way to drastically reduce the complexity of

our decision procedure is to let the specification be in GR(1) too. In such a case, the

LTL model checking procedure in line 7 of Algorithm 10 can be avoided, leading to a

much simpler construction, which runs in polynomial time for every fixed number of

players. In this section, we provide precisely such a simpler construction.

Recall that every GR(1) specification ϕ can be regarded as a Streett condition

of index 1 over an CGS M′ suitably constructed from the original CGS M. Thus,

by denoting (Cϕ, Eϕ) and (Ci, Ei) the Streett pairs corresponding to the GR(1) con-

ditions ϕ and γi, respectively, the problem of finding a path in M′ satisfying the

formula ϕ ∧ ∧i∈W γi amounts to deciding the emptiness of the Streett automaton

S = (~Ac, St′, s′0, tr,F) where F = {(Cϕ, Eϕ), (Cγi , Eγi)i∈W}.
Note that the size ofM′ is polynomial in the size of the GR(1) formulae involved,

polynomial in the number of states and actions in the original CGS M, and expo-

nential in the number of players. More specifically, we have that |St′| = |St| · |γ||N|

and so the number of edges is at most |St′|2. Moreover, the emptiness problem of a

deterministic Streett word automaton can be solved in time that is polynomial in the

92

automaton’s index and its number of states and transitions [Rauch Henzinger and

Telle, 1996, Kupferman, 2018].

The complexity of the E-Nash problem takes 2|N| times a procedure for com-

puting at most |N | punishing regions (that is polynomial in the size of both G and

ϕ, γ1, . . . , γN) plus the complexity of the emptiness problem for a Streett automaton

whose size is polynomial in G ϕ, γ1, . . . , γN , and exponential in the number of players.

Based on the constructions described above, we can show the following (fixed-

parameter tractable) complexity result.

Theorem 15. For a given GR(1) game G and a GR(1) formula ϕ, the E-Nash problem

can be solved in time that is polynomial in |St|, |Ac|, and |ϕ|, |γ1|, . . . , |γN | and

exponential in the number of players |N|. Therefore, the problem is fixed-parameter

tractable, parametrized in the number of players.

5.4 Mean-Payoff Games

We now focus on multi-player mean-payoff (mp) games. As in the previous case, we

first characterise the Nash Equilibria of a game in terms of punishments and then

reduce E-Nash to a suitable path-finding problem in the underlying CGS. To do this,

we first need to recall the notion of secure values for mean-payoff games [Ummels and

Wojtczak, 2011].

For a player i and a state s ∈ St, by puni(s) we denote the punishment value of i

over s, that is, the maximum payoff that i can achieve from s, when all other players

behave adversarially. Such a value can be computed by considering the corresponding

two-player zero-sum mean-payoff game [Zwick and Paterson, 1996]. Thus, it is in

NP∩ coNP, and note that both player i and coalition N \ {i} can achieve the optimal

value of the game using memoryless strategies.

For a player i and a value z ∈ R, a pair (s,~a) is z-secure for i if puni(tr(s, (~a−i, a
′
i))) ≤

z for every a′i ∈ Ac.

Theorem 16. For every mp game G and ultimately periodic path π = (s0,~a0), (s1,~a
1), . . .,

the following are equivalent

1. There is ~σ ∈ NE(G) such that π = π(~σ, s0);

2. There exists z ∈ RN, where zi ∈ {puni(s) : s ∈ St} such that, for every i ∈ N

(a) for all k ∈ N, the pair (sk,~a
k) is zi-secure for i, and

93

(b) zi ≤ payi(π).

Proof. For (1) implies (2): Let zi be the largest value player i can get by deviating

from π. Let k ∈ N be such that zi = puni(tr(sk, (~a−i, a
′
i))). Suppose further that

payi(π) < zi. Thus, player i would deviate at sk, which is a contradiction to π being

a path induced by a Nash equilibrium.

For (2) imples (1): Define strategy profile ~σ that follows π as long as no-one has

deviated from π. In such a case where player i deviates on the k-th iteration, the

strategy profile ~σ−i starts playing the zi-secure strategy for player i that guarantees

the payoff of player i to be less than zi. Therefore, we have payi(π(~σ−i, σ′i)) ≤ zi ≤
payi(π), for every possible strategy σ′i of player i (the second inequality is due to

condition 2(b)). Thus, there is no beneficial deviation for player i and π is a path

induced by a Nash equilibrium.

The characterization of Nash Equilibria provided in Theorem 16 allows us to turn

the E-Nash problem for mp games into a path finding problem over G. Similarly to

the case of GR(1) games, we have the following procedure.

1. For every i ∈ N and s ∈ St, compute the value puni(s);

2. Guess a vector z ∈ RN of values, each of them being a punishment value for a

player i;

3. Compute the game G[z] by removing the states s such that puni(s) ≤ zi for

some player i and the transitions (s,~a) that are not zi secure for some player i;

4. Find an ultimately periodic path π in game G[z] such that π |= ϕ and zi ≤
payi(π) for every player i ∈ N.

Step 1 can be done in NP for every pair (i, s), step 2 can be done in exponential

time and polynomial space in the number of z-secure values, and step 3 can be done

in polynomial time, similar to the case of GR(1) games. Regarding the last step, its

complexity depends on the specification language. For the case of ϕ being an LTL

formula, consider the formula

ϕE-Nash := ϕ ∧
∧

i∈N

(mp(i) ≥ zi),

written in the language LTLLim, an extension of LTL where statements about mean-

payoff values over a given weighted CGS can be made [Boker et al., 2014]. Observe

94

that formula ϕE-Nash corresponds exactly to requirement 2(b) in Theorem 16. More-

over, since every path in G[z] satisfies condition 2(a) by construction, every path that

satisfies ϕE-Nash is a solution of the E-Nash problem and viceversa. We can solve

the latter problem by model checking the formula against the CGS underlying G[z].

Since this can be done in PSPACE [Boker et al., 2014], we have the following result.

Corollary 17. The E-Nash problem for mp games with an LTL specification formula

ϕ is PSPACE-complete.

Proof. The upper-bound follows from Theorem 16. The lower-bound follows from the

fact that LTL model checking is a special case of E-Nash, for instance, in which all

weights for all players are set to the same value, say 0.

As for the case of GR(1) games, we can summarize the procedure in the following

algorithm.

Algorithm 11 E-Nash of mp games.

1: Input: A game Gmp and a specification formula ϕ.
2: for i ∈ N and s ∈ St do
3: Compute puni(G)
4: end for
5: for ~z ∈ {puni(s) : s ∈ St}N do
6: Compute G[z]
7: if π |= ϕE-Nash for some π ∈ G[z] then
8: return Accept
9: end if

10: end for
11: return Reject

The special case of GR(1) specifications. As in the case of GR(1) games, here we

show that restricting the specification language to GR(1) lowers the complexity also

for mp games. The reason is that the path finding problem for GR(1) specifications

can be done while avoiding model-checking of an LTLLim formula. In order to do this,

we follow a different approach. Using am mp game G and a GR(1) specification ϕ we

define a linear program such that the linear program has a solution if and only if the

pair (G, ϕ) is an instance of E-Nash. In particular, this approach is similar to the

technique used in [Gutierrez et al., 2017c, Theorem 2], where Linear Programming is

used to find the complexity of solving a variant of E-Nash. Formally, we have the

following result.

95

Theorem 18. The E-Nash problem for mp games with a GR(1) specification ϕ is

NP-complete.

Proof. We will define a linear program of size polynomial in G having a solution if

and only if there exists an ultimately periodic path whose payoff for every player i is

at least a minimum threshold zi and satisfies the GR(1) specification.

In order to do that, first recall that ϕ has the following form

ϕ =
m∧

l=1

GFψl →
n∧

r=1

GFθr,

and let V (ψl) and V (θr) be the subset of states in G that satisfy the boolean com-

binations ψl and θr, respectively. Observe that property ϕ is satisfied over a path π

if, and only if, either π visits every V (θr) infinitely many times or visits some of the

V (ψl) only a finite number of times.

For the game G[z], let (V,E) be the underlying graph, and for every edge e ∈ E
introduce a variable xe. Informally, the value xe is the number of times that the

edge e is used on a cycle. Formally, let src(e) = {v ∈ V : ∃w e = (v, w) ∈ E};
trg(e) = {v ∈ V : ∃w e = (w, v) ∈ E}; out(v) = {e ∈ E : src(e) = v}; and

in(v) = {e ∈ E : trg(e) = v}.
Consider ψl for some 1 ≤ l ≤ m, and define the linear program LP(ψl) with the

following inequalities and equations:

Eq1: xe ≥ 0 for each edge e — a basic consistency criterion;

Eq2: Σe∈Exe ≥ 1 — ensures that at least one edge is chosen;

Eq3: for each a ∈ A, Σe∈Ewa(src(e))xe ≥ 0 — this enforces that the total sum of any

solution is positive;

Eq4: Σsrc(e)∩V (ψl)6=∅xe = 0 — this ensures that no state in V (ψl) is in the cycle asso-

ciated with the solution;

Eq5: for each v ∈ V , Σe∈out(v)xe = Σe∈in(v)xe — this condition says that the number

of times one enters a vertex is equal to the number of times one leaves that

vertex.

By construction, it follows that LP(ψl) admits a solution if and only if there exists

a path π in G such that zi ≤ payi(π) for every player i and visits V (ψl) only finitely

many times. In addition, consider the linear program LP(θ1, . . . , θn) defined with the

following inequalities and equations:

96

Eq1: xe ≥ 0 for each edge e — a basic consistency criterion;

Eq2: Σe∈Exe ≥ 1 — ensures that at least one edge is chosen;

Eq3: for each a ∈ A, Σe∈Ewa(src(e))xe ≥ 0 — this enforces that the total sum of any

solution is positive;

Eq4: for all 1 ≤ r ≤ n, Σsrc(e)∩V (θr)6=∅xe ≥ 1 — this ensures that for every V (θr) at

least one state is in the cycle;

Eq5: for each v ∈ V , Σe∈out(v)xe = Σe∈in(v)xe — this condition says that the number

of times one enters a vertex is equal to the number of times one leaves that

vertex.

In this case, LP(θ1, . . . , θn) admits a solution if and only if there exists a path π

such that zi ≤ payi(π) for every player i and visits every V (θr) infinitely many times.

Since the constructions above are polynomial in the size of both G and ϕ, we can

conclude it is possible to check in NP the statement that there is a path π satisfying

ϕ such that zi ≤ payi(π) for every player i in the game if and only if one of the two

linear programs defined above has a solution. For the lower bound, we use [Ummels

and Wojtczak, 2011] and observe that if ϕ is true, then the problem is equivalent to

checking whether the mp game has a Nash equilibrium.

5.5 Summary

E-Nash is, arguably, the most fundamental problem in the rational verification frame-

work, but it is not the only one. The two other key problems are A-Nash and

Non-emptiness.

We can conclude from (the proofs of) the results presented so far, which are

summarised in Table 5.1, that while A-Nash for GR(1) games is also PSPACE and

FPT, respectively, in case of LTL and GR(1) specifications, for mp games the problem

is, respectively, PSPACE and coNP, in each case. In addition, we can also con-

clude that whereas Non-emptiness for GR(1) games is FPT, for mp games is NP-

complete. These results contrast with those when players’ goals are general LTL

formulae, where all problems are 2EXPTIME-complete since LTL synthesis, which is

2EXPTIME-hard [Pnueli and Rosner, 1989], can be encoded. These results also con-

trast with those presented in [Gao et al., 2017], where it is shown that, in succinct

97

Players’ goals Specification E-Nash

LTL LTL 2EXPTIME-complete

GR(1) LTL PSPACE-complete (Corollary 14)

GR(1) GR(1) FPT (Theorem 15)

mp LTL PSPACE-complete (Corollary 17)

mp GR(1) NP-complete (Theorem 18)

Table 5.1: Summary of main complexity results.

model representations given by iterated Boolean games or reactive modules, all prob-

lems in the rational verification framework can be reduced to Non-emptiness, which

clearly cannot be the case here, unless the whole polynomial hierarchy collapses.

98

Chapter 6

Equilibrium Design

In game theory, mechanism design is concerned with the design of incentives so that

a desired outcome of the game can be achieved. In this chapter, we study the design

of incentives so that a desirable equilibrium is obtained, for instance, an equilibrium

satisfying a given temporal logic property—a problem that we call equilibrium de-

sign. We base our study on a framework where system specifications are represented

as temporal logic formulae, games as quantitative concurrent game structures, and

players’ goals as mean-payoff objectives. In particular, we consider system specifica-

tions given by LTL and GR(1) formulae, and show that implementing a mechanism

to ensure that a given temporal logic property is satisfied on some/every Nash equi-

librium of the game, whenever such a mechanism exists, can be done in PSPACE for

LTL properties and in NP/ΣP
2 for GR(1) specifications. We also study the complexity

of various related decision and optimisation problems, such as optimality and unique-

ness of solutions, and show that the complexities of all such problems lie within the

polynomial hierarchy. As an application, equilibrium design can be used as an al-

ternative solution to the rational synthesis and verification problems for concurrent

games with mean-payoff objectives whenever no solution exists, or as a technique

to repair, whenever possible, concurrent games with undesirable rational outcomes

(Nash equilibria) in an optimal way. Part of this chapter appeared in the proceedings

of CONCUR’19 [Gutierrez et al., 2019c].

6.1 From Mechanism Design to Equilibrium De-

sign

We now describe the two main problems that are our focus of study. As discussed

in the introduction, such problems are closely related to the well-known problem of

99

mechanism design in game theory. Consider a system populated by agents N, where

each agent i ∈ N wants to maximise its payoff payi(·). As in a mechanism design

problem, we assume there is an external principal who has a goal ϕ that it wants the

system to satisfy, and to this end, wants to incentivise the agents to act collectively

and rationally so as to bring about ϕ. In our model, incentives are given by subsidy

schemes and goals by temporal logic formulae.

Subsidy Schemes. A subsidy scheme defines additional imposed rewards over

those given by the weight function w. While the weight function w is fixed for any

given game, the principal is assumed to be at liberty to define a subsidy scheme

as they see fit. Since agents will seek to maximise their overall rewards, the prin-

cipal can incentivise agents away from performing visiting some states and towards

visiting others; if the principal designs the subsidy scheme correctly, the agents are

incentivised to choose a strategy profile ~σ such that π(~σ) |= ϕ. Formally, we model

a subsidy scheme as a function κ : N → St → N, where the intended interpretation

is that κ(i)(s) is the subsidy in the form of a natural number k ∈ N that would be

imposed on player i if such a player visits state s ∈ St. For instance, if we have

wi(s) = 1 and κ(i)(s) = 2, then player i gets 1 + 2 = 3 for visiting such a state. For

simplicity, hereafter we write κi(s) instead of κ(i)(s) for the subsidy for player i.

Notice that having an unlimited fund for a subsidy scheme would make some

problems trivial, as the principal can always incentivise players to satisfy ϕ (provided

that there is a path in A satisfying ϕ). A natural and more interesting setting is that

the principal is given a constraint in the form of budget β ∈ N. The principal then

can only spend within the budget limit. To make this clearer, we first define the cost

of a subsidy scheme κ as follows.

Definition 30. Given a game G and subsidy scheme κ, we let cost(κ) =
∑

i∈N

∑
s∈St κi(s).

We say that a subsidy scheme κ is admissible if it does not exceed the budget β,

that is, if cost(κ) ≤ β. Let K(G, β) denote the set of admissible subsidy scheme over

G given budget β ∈ N. Thus we know that for each κ ∈ K(G, β) we have cost(κ) ≤ β.

We write (G, κ) to denote the resulting game after the application of subsidy scheme

κ on game G. Formally, we define the application of some subsidy scheme on a game

as follows.

Definition 31. Given a game G = (A, (wi)i∈N) and an admissible subsidy scheme

κ, we define (G, κ) = (A, (w′i)i∈N), where w′i(s) = wi(s) + κi(s), for each i ∈ N and

s ∈ St.

100

We now come to the main question(s) that we consider in the remainder of the

chapter. We ask whether the principal can find a subsidy scheme that will incen-

tivise players to collectively choose a rational outcome (a Nash equilibrium) that

satisfies its temporal logic goal ϕ. We call this problem equilibrium design. Follow-

ing [Wooldridge et al., 2013], we define two variants of this problem, a weak and a

strong implementation of the equilibrium design problem.

• In the Weak Implementation, we are given a game G, a formula ϕ, and a

budget β, and we are asked whether there exists any subsidy scheme κ such

that (G, κ) has at least one Nash equilibrium that satisfies ϕ;

• In the Strong Implementation, we are given a game G, a formula ϕ, and

a budget β, and we are asked whether there exists any subsidy scheme κ such

that

1. (G, κ) has at least one Nash equilibrium, and

2. all Nash equilibria of (G, κ) satisfy ϕ.

6.2 Equilibrium Design: Weak Implementation

In this section, we study the weak implementation of the equilibrium design problem,

a logic-based computational variant of the principal’s mechanism design problem in

game theory. We assume that the principal has full knowledge of the game G under

consideration, that is, the principal uses all the information available of G to find

the appropriate subsidy scheme, if such a scheme exists. We now formally define the

weak variant of the implementation problem, and study its respective computational

complexity, first with respect to goals (specifications) given by LTL formulae and then

with respect to GR(1) formulae.

Let WI(G, ϕ, β) denote the set of subsidy schemes over G given budget β that

satisfy a formula ϕ in at least one path π generated by ~σ ∈ NE(G). Formally

WI(G, ϕ, β) = {κ ∈ K(G, β) : ∃~σ ∈ NE(G, κ) s.t. π(~σ) |= ϕ}.

Definition 32 (Weak Implementation). Given a game G, formula ϕ, and budget

β:

Is it the case that WI(G, ϕ, β) 6= ∅?

101

In order to solve Weak Implementation, we first characterise the Nash equi-

libria of a multi-player concurrent game in terms of punishment strategies. To do this

in our setting, we recall the notion of secure values for mean-payoff games [Ummels

and Wojtczak, 2011].

For a player i and a state s ∈ St, by puni(s) we denote the punishment value of i

over s, that is, the maximum payoff that i can achieve from s, when all other players

behave adversarially. Such a value can be computed by considering the corresponding

two-player zero-sum mean-payoff game [Zwick and Paterson, 1996]. Thus, it is in

NP∩ coNP, and note that both player i and coalition N \ {i} can achieve the optimal

value of the game using memoryless strategies. Then, for a player i and a value z ∈ R,

a pair (s,~a) is z-secure for player i if puni(tr(s, (~a−i, a
′
i))) ≤ z for every a′i ∈ Ac.

Write puni(G) for the set of punishment values for player i in G. From Chapter 5

Theorem 16, it is the case that for every mp game G and ultimately periodic path

π = (s0,~a0), (s1,~a
1), . . ., the following are equivalent:

1. There is ~σ ∈ NE(G) such that π = π(~σ, s0);

2. There exists z ∈ RN, where zi ∈ {puni(s) : s ∈ St} such that, for every i ∈ N

(a) for all k ∈ N, the pair (sk,~a
k) is zi-secure for i, and

(b) zi ≤ payi(π).

The characterisation of Nash Equilibria provided in Theorem 16 will allow us to

turn the Weak Implementation problem into a path finding problem over (G, κ).

On the other hand, with respect to the budget β that the principal has at its disposal,

the definition of subsidy scheme function κ implies that the size of K(G, β) is of

bounded size, and particularly, it is bounded by β and the number of agents and

states in the game G, in the following way.

Proposition 2. Given a game G with |N | players and |St| states and budget β, it

holds that

|K(G, β)| = β + 1

m

(
β +m

β + 1

)
,

with m = |N × St| being the number of pairs of possible agents and states.

Proof. For a fixed budget b, the number of subsidy schemes of budget exactly b

corresponds to the number of weak compositions of b in m parts, which is given

by
(
b+m−1

b

)
[S. Heubach and T. Mansour, 2009]. Therefore, the number of subsidy

schemes of budget at most β is the sum

102

|K(G, β)| =
β∑

b=0

(
b+m− 1

b

)
.

We now prove that

β∑

b=0

(
b+m− 1

b

)
=
β + 1

m

(
β +m

β + 1

)
.

By induction on β, as base case, for β = 0, we have that

(
β +m− 1

β

)
= 1 =

β + 1

m

(
β +m

β + 1

)
.

For the inductive case, let us assume that the assertion hold for some β and let

us prove for β + 1. We have the following:

β+1∑

b=0

(
b+m− 1

b

)
=

β∑

b=0

(
b+m− 1

b

)
+

(
β +m− �1 + �1

β + 1

)
=
β + 1

m

(
β +m

β + 1

)
+

(
β +m

β + 1

)
.

Therefore we have

β + 1

m

(
β +m

β + 1

)
+

(
β +m

β + 1

)
=

(
β +m

β + 1

)(
β + 1

m
+ 1

)
=

(
β +m

β + 1

)
β + 1 +m

m
=
β + 1 +m

m
· (β +m)!

(β + 1)!(��β +m− ��β − 1)!
=

(β +m+ 1)!

(β + 1)!m!
=

(β +m+ 1)!

(β + 1)!m!
· β + 2

β + 2
· m
m

=
β + 2

m
· (β +m+ 1)!

(β + 2)!(m− 1)!
=

β + 2

m
· (β +m+ 1)!

(β + 2)!(β +m+ 1− β − 2)!
=
β + 2

m

(
β +m+ 1

β + 2

)

that proves the assertion.

From Proposition 2 we derive that the number of possible subsidy schemes is

polynomial in the budget β and singly exponential in both the number of agents and

states in the game. At this point, solving Weak Implementation can be done with

the following procedure :

1. Guess:

• a subsidy scheme κ ∈ K(G, β),

• a state s ∈ St for every player i ∈ N, and

• punishment memoryless strategies (~σ−1, . . . , ~σ−n) for all players i ∈ N;

103

2. Compute (G, κ);

3. Compute z ∈ RN;

4. Compute the game (G, κ)[z] by removing the states s such that puni(s) ≤ zi for

some player i and the transitions (s,~a−i) that are not zi secure for player i;

5. Check whether there exists an ultimately periodic path π in (G, κ)[z] such that

π |= ϕ and zi ≤ payi(π) for every player i ∈ N.

The (deterministic) algorithm implementing the procedure above can be sum-

marised as follows.

Algorithm 12 Weak Implementation.

1: Input: A game G, a specification formula ϕ, and budget β.
2: for κ ∈ K(G, β), s ∈ St, and (~σ−1, . . . , ~σ−n) ∈×j∈N

(×i∈N\jσi) do

3: Compute (G, κ)
4: for i ∈ N do
5: Compute zi = puni(s) using ~σ−i
6: end for
7: Compute (G, κ)[z]
8: if there is ~σ ∈ NE((G, κ)[z]) such that π(~σ) |= ϕ then
9: return Accept

10: end if
11: end for
12: return Reject

Since the set K(G, β) is finitely bounded (Proposition 2), and punishment strate-

gies only need to be memoryless, thus also finitely bounded, clearly step 1 can be

guessed nondeterministically. Moreover, each of the guessed elements is of polyno-

mial size, thus this step can be done (deterministically) in polynomial space. Step 2

clearly can be done in polynomial time. Step 3 can also be done in polynomial time

since, given (~σ−1, . . . , ~σ−n), we can compute z solving |N| one-player mean-payoff

games, one for each player i [Zwick and Paterson, 1996, Thm. 6]. For step 5, we will

use Theorem 16 and consider two cases, one for LTL specifications and one for GR(1)

specifications. Firstly, for LTL specifications, consider the formula

ϕWI := ϕ ∧
∧

i∈N

(mp(i) ≥ zi)

104

written in LTLLim [Boker et al., 2014], an extension of LTL where statements about

mean-payoff values over a given weighted CGS can be made.1 The semantics of the

temporal operators of LTLLim is just like the one for LTL over infinite computation

paths π = s0, s1, s3. On the other hand, the meaning of mp(i) ≥ zi is simply that

such an atomic formula is true if, and only if, the mean-payoff value of π with respect

to player i is greater or equal to zi, a constant real value; that is, mp(i) ≥ zi is true

in π if and only if payi(π) = mp(wi(π)) is greater or equal than constant value zi.

Formula ϕWI corresponds exactly to 2(b) in Theorem 16. Furthermore, since every

path in (G, κ)[z] satisfies condition 2(a) of Theorem 16, every computation path of

(G, κ)[z] that satisfies ϕWI is a witness to the Weak Implementation problem.

Theorem 19. Weak Implementation with LTL specifications is PSPACE-complete.

Proof. Membership follows from the procedure above and the fact that model check-

ing for LTLLim is PSPACE-complete [Boker et al., 2014]. Hardness follows from the fact

that LTL model checking is a special case of Weak Implementation. For instance,

consider the case in which all weights for all players are set to the same value, say 0,

and the principal has budget β = 0.

Case with GR(1) specifications. One of the main bottlenecks of our procedure to

solve Weak Implementation lies in step 5, where we solve an LTLLim model check-

ing problem. To reduce the complexity of our decision procedure, we consider Weak

Implementation with the specification ϕ expressed in the GR(1) sublanguage of

LTL. With this specification language, the path finding problem can be solved with-

out model-checking the LTLLim formula given before. In order to do this, we can define

a linear program (LP) such that the LP has a solution if and only if WI(G, ϕ, β) 6= ∅.

From our previous procedure, observe that step 1 can be done nondeterministically in

polynomial time, and steps 2–4 can be done (deterministically) in polynomial time.

Furthermore, using LP, we also can check step 5 deterministically in polynomial time.

For the lower-bound, we use [Ummels and Wojtczak, 2011] and note that if ϕ = >
and β = 0, then the problem reduces to checking whether the underlying mp game has

a Nash equilibrium. Based on the above observations, we have the following result.

Theorem 20. Weak Implementation with GR(1) specifications is NP-complete.

1The formal semantics of LTLLim can be found in [Boker et al., 2014]. We prefer to give only an
informal description here.

105

Proof. We will define a linear program of size polynomial in (G, κ) having a solution

if and only if there exists an ultimately periodic path π such that zi ≤ payi(π) and

satisfies the GR(1) specification.

Recall that ϕ has the following form

ϕ =
m∧

l=1

GFψl →
n∧

r=1

GFθr,

and let V (ψl) and V (θr) be the subset of states in (G, κ) that satisfy the boolean

combinations ψl and θr, respectively. Observe that property ϕ is satisfied over a path

π if, and only if, either π visits every V (θr) infinitely many times or visits some of

the V (ψl) only a finite number of times.

For the game (G, κ)[z], let W = (V,E, (wa)a∈N) be the underlying multi-weighted

graph, and for every edge e ∈ E introduce a variable xe. Informally, the value xe is

the number of times that the edge e is used on a cycle. Formally, let src(e) = {v ∈
V : ∃w e = (v, w) ∈ E}; trg(e) = {v ∈ V : ∃w e = (w, v) ∈ E}; out(v) = {e ∈ E :

src(e) = v}; and in(v) = {e ∈ E : trg(e) = v}.
Consider ψl for some 1 ≤ l ≤ m, and define the linear program LP(ψl) with the

following inequalities and equations:

Eq1: xe ≥ 0 for each edge e — a basic consistency criterion;

Eq2: Σe∈Exe ≥ 1 — ensures that at least one edge is chosen;

Eq3: for each a ∈ N, Σe∈Ewa(src(e))xe ≥ 0 — this enforces that the total sum of any

solution is non-negative;

Eq4: Σsrc(e)∩V (ψl)6=∅xe = 0 — this ensures that no state in V (ψl) is in the cycle asso-

ciated with the solution;

Eq5: for each v ∈ V , Σe∈out(v)xe = Σe∈in(v)xe — this condition says that the number

of times one enters a vertex is equal to the number of times one leaves that

vertex.

By construction, it follows that LP(ψl) admits a solution if and only if there exists

a path π in G such that zi ≤ payi(π) for every player i and visits V (ψl) only finitely

many times. In addition, consider the linear program LP(θ1, . . . , θn) defined with the

following inequalities and equations:

Eq1: xe ≥ 0 for each edge e — a basic consistency criterion;

106

Eq2: Σe∈Exe ≥ 1 — ensures that at least one edge is chosen;

Eq3: for each a ∈ N, Σe∈Ewa(src(e))xe ≥ 0 — this enforces that the total sum of any

solution is non-negative;

Eq4: for all 1 ≤ r ≤ n, Σsrc(e)∩V (θr)6=∅xe ≥ 1 — this ensures that for every V (θr) at

least one state is in the cycle;

Eq5: for each v ∈ V , Σe∈out(v)xe = Σe∈in(v)xe — this condition says that the number

of times one enters a vertex is equal to the number of times one leaves that

vertex.

In this case, LP(θ1, . . . , θn) admits a solution if and only if there exists a path π

such that zi ≤ payi(π) for every player i and visits every V (θr) infinitely many times.

Since the constructions above are polynomial in the size of both (G, κ) and ϕ,

we can conclude it is possible to check in NP the statement that there is a path π

satisfying ϕ such that zi ≤ payi(π) for every player i in the game if and only if one of

the two linear programs defined above has a solution.

For the lower-bound, we use [Ummels and Wojtczak, 2011] and observe that if ϕ

is true and β = 0, then the problem is equivalent to checking whether the mp game

has a Nash equilibrium.

We now turn our attention to the strong implementation of the equilibrium design

problem. As in this section, we first consider LTL specifications and then GR(1)

specifications.

6.3 Equilibrium Design: Strong Implementation

Although the principal may find WI(G, ϕ, β) 6= ∅ to be good news, it might not be

good enough. It could be that even though there is a desirable Nash equilibrium, the

others might be undesirable. This motivates us to consider the strong implementation

variant of equilibrium design. Intuitively, in a strong implementation, we require that

every Nash equilibrium outcome satisfies the specification ϕ, for a non-empty set of

outcomes. Then, let SI(G, ϕ, β) denote the set of subsidy schemes κ given budget β

over G such that:

1. (G, κ) has at least one Nash equilibrium outcome,

2. every Nash equilibrium outcome of (G, κ) satisfies ϕ.

107

Formally we define it as follows:

SI(G, ϕ, β) = {κ ∈ K(G, β) : NE(G, κ) 6= ∅ ∧ ∀~σ ∈ NE(G, κ) s.t. π(~σ) |= ϕ}.

This gives us the following decision problem:

Definition 33 (Strong Implementation). Given a game G, formula ϕ, and bud-

get β:

Is it the case that SI(G, ϕ, β) 6= ∅?

Strong Implementation can be solved with a 5-step procedure where the first

four steps are as in Weak Implementation, and the last step (step 5) is as follows:

1. Guess:

• a subsidy scheme κ ∈ K(G, β),

• a state s ∈ St for every player i ∈ N, and

• punishment memoryless strategies (~σ−1, . . . , ~σ−n) for all players i ∈ N;

2. Compute (G, κ);

3. Compute z ∈ RN;

4. Compute the game (G, κ)[z] by removing the states s such that puni(s) ≤ zi for

some player i and the transitions (s,~a−i) that are not zi secure for player i;

5. Check whether:

(a) there is no ultimately periodic path π in (G, κ)[z] such that zi ≤ payi(π)

for each i ∈ N;

(b) there is an ultimately periodic path π in (G, κ)[z] such that π |= ¬ϕ and

zi ≤ payi(π), for each i ∈ N.

For step 5, observe that a positive answer to 5(a) or 5(b) is a counterexample to

κ ∈ SI(G, ϕ, β). Then, to carry out this procedure for the Strong Implementation

problem with LTL specifications, consider the following LTLLim formulae:

ϕ∃ =
∧

i∈N

(mp(i) ≥ zi);

ϕ∀ = ϕ∃ → ϕ.

108

Notice that the expression NE(G, κ) 6= ∅ can be expressed as “there exists a

path π in G that satisfies formula ϕ∃”. On the other hand, the expression ∀~σ ∈
NE(G, κ) such that π(~σ) |= ϕ can be expressed as “for every path π in G, if π satisfies

formula ϕ∃, then π also satisfies formula ϕ”. Thus, using these two formulae, we

obtain the following result.

Corollary 21. Strong Implementation with LTL specifications is PSPACE-complete.

Proof. Membership follows from the fact that step 5(a) can be solved by existential

LTLLim model checking, whereas step 5(b) by universal LTLLim model checking—both

clearly in PSPACE by Savitch’s theorem [Savitch, 1970]. Hardness is similar to the

construction in Theorem 19.

The (deterministic) algorithm implementing the procedure for Strong Imple-

mentation is shown in Algorithm 13.

Algorithm 13 Strong Implementation.

1: Input: A game G, a specification formula ϕ, and budget β.
2: for κ ∈ K(G, β) do
3: Compute (G, κ)
4: for i ∈ N and s ∈ St do
5: Compute puni((G, κ))
6: end for
7: f∃ ← ⊥;f∀ ← >
8: for z ∈ {puni(s) : s ∈ St}N do
9: Compute (G, κ)[z]

10: if there exists π ∈ (G, κ)[z] such that for each i ∈ N, payi(π) ≥ zi then
11: f∃ ← >
12: end if
13: end for
14: for z ∈ {puni(s) : s ∈ St}N do
15: if there exists π ∈ (G, κ)[z] s.t. for each i ∈ N, payi(π) ≥ zi∧π |= ¬ϕ then
16: f∀ ← ⊥
17: end if
18: end for
19: if (f∃ ∧ f∀) then
20: return Accept
21: end if
22: end for
23: return Reject

109

Case with GR(1) specifications. Notice that the first part, i.e., NE(G, κ) 6= ∅
can be solved in NP [Ummels and Wojtczak, 2011]. For the second part, observe that

∀~σ ∈ NE(G, κ) such that π(~σ) |= ϕ

is equivalent to

¬∃~σ ∈ NE(G, κ) such that π(~σ) |= ¬ϕ.

Thus we have

¬ϕ =
m∧

l=1

GFψl ∧ ¬
(n∧

r=1

GFθr
)
.

To check this, we modify the LP in Theorem 20. Specifically, we modify Eq4 in

LP(θ1, . . . , θn) to encode the θ-part of ¬ϕ. Thus, we have the following equation in

LP′(θ1, . . . , θn):

Eq4: there exists r, 1 ≤ r ≤ n, Σsrc(e)∩V (θr) 6=∅xe = 0 — this condition ensures that

at least one set V (θr) does not have any state in the cycle associated with the

solution.

In this case, LP′(θ1, . . . , θn) has a solution if and only if there is a path π such

that zi ≤ payi(π) for every player i and, for at least one V (θr), its states are visited

only finitely many times. Thus, we have a procedure that checks if there is a path

π that satisfies ¬ϕ such that zi ≤ payi(π) for every player i, if and only if both

linear programs have a solution. Using this new construction, we can now prove the

following result.

Theorem 22. Strong Implementation with GR(1) specifications is ΣP
2 -complete.

Proof. For membership, observe that by rearranging the problem statement, we have

the following question:

Check whether the following expression is true

∃κ ∈ K(G, β), (1)

∃~σ ∈ σ1 × · · · × σn, such that ~σ ∈ NE(G, κ), (2)

and

∀~σ′ ∈ σ1 × · · · × σn, if ~σ′ ∈ NE(G, κ) then π(~σ′) |= ϕ. (3)

Statement (2) can be checked in NP (Theorem 16). Whereas, verifying statement (3)

is in coNP; to see this, notice that we can rephrase (3) as follows: 6 ∃z ∈ {puni(s) :

110

s ∈ St}N such that both LP(ψl) and LP′(θ1, . . . , θn) have a solution in (G, κ)[z]. Thus

ΣP
2 membership follows.

We prove hardness by a reduction from QSAT2 (satisfiability of quantified Boolean

formula with 2 alternations) [Papadimitriou, 1994]. Let ψ(x,y) be an n+m variable

Boolean 3DNF formula, where x = {x1, . . . , xn} and y = {y1, . . . , yn}, with t1, . . . , tk

terms. Write tj for the set of literals in j-th term and tij for the i-th literal in tj.

Moreover write xji and yji for variable xi ∈ x and yi ∈ y that appears in j-th term,

respectively. For instance, if the fifth term is of the form of (x2 ∧ ¬x3 ∧ y4), then we

have t5 = {x5
2, x

5
3, y

5
4} and t1

5 = x5
2. Let T = {ti ∩ y : 1 ≤ i ≤ k}, that is, the set of

subset of ti that contains only y-literals.

For a formula ψ(x,y) we construct an instance of Strong Implementation

such that SI(G, ϕ, β) 6= ∅ if and only if there is an ~x ∈ {0, 1}n such that ψ(x,y) is

true for every ~y ∈ {0, 1}m. Let G be such a game where

• N = {1, 2},

• St = {⋃j∈[1,k](tj × {0, 1}3)} ∪ {T× {0}3} ∪ {(source, {0}3), (sink, {0}3)},

• s0 = source,

• for each state s ∈ St

– Ac1(s) = {{T ∪ {sink}} × {0}3}, Ac2(s) = {ε}, if s = (source, {0}3),

– Ac1(s) = {t1
i : s[0] ⊆ ti ∧ i ∈ [1, k]}, Ac2(s) = {0, 1}3, if s ∈ {T× {0}3},

– Ac1(s) = {ε}, Ac2(s) = {ε}, if s ∈ ⋃j∈[1,k](tj × {0, 1}3),

• for an action profile ~a = (a1, a2)

– tr(s,~a) = a1, if s = (source, {0}3),

– tr(s,~a) = (a1, a2), if s ∈ {T× {0}3},
– tr(s,~a) = (t

(i mod 3)+1
j , s[1]), if s = (tij, s[1]) ∈ ⋃j∈[1,k](tj × {0, 1}3);

– tr(s,~a) = s, otherwise;

• for each state s ∈ St, λ(s) = s[0],

• for each state s ∈ St

– w1(s) = 2
3
, if s[0] = sink2,

2This can be implemented by a macrostate with three substates—2 substates with weight of 1,
and 1 with weight of 0—forming a simple cycle.

111

– w1(s) = 0, otherwise;

• the payoff of player i ∈ N for an ultimately periodic path π in G is

– pay1(π) = mp(w1(π)),

– pay2(π) = −mp(w1(π)),

Furthermore, let β = |x| and the GR(1) property to be ϕ := GF ¬sink. Define a

(partial) subsidy scheme κ : x → {0, 1}. The weights are updated with respect to κ

as follows:

for each s ∈ St such that s[0] ∈ tj \ y, that is, an x-literal that appears in term tj

w1(s) =

1, if κ(s) = 1 ∧ s[0] is not negated in tj

1, if κ(s) = 0 ∧ s[0] is negated in tj

0, if κ(s) = 1 ∧ s[0] is negated in tj

0, otherwise;

for each s ∈ St such that s[0] ∈ tj \ x, that is, a y-literal that appears in term tj,

s[0] = tij

w1(s) =

1, if s[1][i] = 1 ∧ s[0] is not negated in tj

1, if s[1][i] = 0 ∧ s[0] is negated in tj

0, if s[1][i] = 1 ∧ s[0] is negated in tj

0, otherwise;

the weights of other states remain unchanged.

The construction is now complete, and polynomial to the size of formula ψ(x,y).

We claim that SI(G, ϕ, β) 6= ∅ if and only if there is an ~x ∈ {0, 1}n such that

ψ(x,y) is true for every ~y ∈ {0, 1}m. From left to right, consider a subsidy scheme

κ ∈ SI(G, ϕ, β) which implies that there exists no Nash equilibrium run in (G, κ)

that ends up in sink. This means that for every action ~a2 ∈ Ac2(s), there exists

~a1 ∈ Ac1(s), s ∈ {T × {0}3}, such that pay1(π) = 1, where π is the resulting path

of the joint action. Observe that this corresponds to the existence of (at least) a

term ti, which evaluates to true under assignment ~x, regardless the value of ~y. From

right to left, consider an assigment ~x ∈ {0, 1}n such that for all ~y ∈ {0, 1}m, the

formula ψ(x,y) is true. This means that for every ~y, there exists (at least one)

term ti in ψ(x,y) that evaluates to true. By construction, specifically the weight

updating rules, for every ~a2 corresponding to assignment ~y, there exists tj such that

∀i ∈ [1, 3],w1(tij) = 1. This means that player 1 can always get payoff equals to 1,

therefore, any run that ends in sink is not sustained by Nash equilibrium.

112

6.4 Optimality and Uniqueness of Solutions

Having asked the questions studied in the previous sections, the principal – the de-

signer in the equilibrium design problem – may want to explore further information.

Because the power of the principal is limited by its budget, and because from the

point of view of the system, it may be associated with a reward (e.g., money, savings,

etc.) or with the inverse of the amount of a finite resource (e.g., time, energy, etc.)

an obvious question is asking about optimal solutions. This leads us to optimisation

variations of the problems we have studied. Informally, in this case, we ask what is

the least budget that the principal needs to ensure that the implementation problems

have positive solutions. The principal may also want to know whether a given sub-

sidy scheme is unique, so that there is no point in looking for any other solutions to

the problem. In this section, we investigate this kind of problems, and classify our

study into two parts, one corresponding to the Weak Implementation problem

and another one corresponding to the Strong Implementation problem.

6.4.1 Optimality and Uniqueness in the Weak Domain

We can now define formally some of the problems that we will study in the rest of this

section. To start, the optimisation variant for Weak Implementation is defined

as follows.

Definition 34 (Opt-WI). Given a game G and a specification formula ϕ:

What is the optimum budget β such that WI(G, ϕ, β) 6= ∅?

Another natural problem, which is related to Opt-WI, is the “exact” variant

– a membership question. In this case, in addition to G and ϕ, we are also given

an integer b, and ask whether it is indeed the smallest amount of budget that the

principal has to spend for some optimal weak implementation. This decision problem

is formally defined as follows.

Definition 35 (Exact-WI). Given a game G, a specification formula ϕ, and an

integer b:

Is b equal to the optimum budget for WI(G, ϕ, β) 6= ∅?

To study these problems, it is useful to introduce some concepts first. More

specifically, let us introduce the concept of implementation efficiency. We say that

a Weak Implementation (resp. Strong Implementation) is efficient if β =

113

cost(κ) and there is no κ′ such that cost(κ′) < cost(κ) and κ′ ∈ WI(G, ϕ, β) (resp.

κ′ ∈ SI(G, ϕ, β)). In addition to the concept of efficiency for an implementation

problem, it is also useful to have the following result.

Proposition 3. Let zi be the largest payoff that player i can get after deviating from

a path π. The optimum budget is an integer between 0 and
∑

i∈N zi · (|St| − 1).

Proof. The lower-bound is straightforward. The upper-bound follows from the fact

that the maximum value the principal has to pay to player i is when the path π is a

simple cycle and formed from all states in St, apart from 1 deviation state.

Using Proposition 3, we can show that both Opt-WI and Exact-WI can be

solved in PSPACE for LTL specifications. Intuitively, the reason is that we can

use the upper bound given by Proposition 3 to go through all possible solutions

in exponential time, but using only nondeterministic polynomial space. Formally, we

have the following results.

Theorem 23. Opt-WI with LTL specifications is FPSPACE-complete.

Proof. Since the search space is bounded (Proposition 3), by using Weak Imple-

mentation an an oracle we can iterate through every instance and return the smallest

β such that WI(G, ϕ, β) 6= ∅. Moreover, each instance is of polynomial size in the size

of the input. Thus membership in FPSPACE follows. Hardness is straightforward.

Corollary 24. Exact-WI with LTL specifications is PSPACE-complete.

The fact that both Opt-WI and Exact-WI with LTL specifications can be an-

swered in PSPACE does not come as a big surprise: checking an instance can be

done using polynomial space and there are only exponentially many instances to be

checked. However, for Opt-WI and Exact-WI with GR(1) specifications, these two

problems are more interesting.

Theorem 25. Opt-WI with GR(1) specifications is FPNP-complete.

Proof. Membership follows from the fact that the search space, which is bounded as

in Proposition 3, can be fully explored using binary search and Weak Implemen-

tation as an oracle. More precisely, we can find the smallest budget β such that

WI(G, ϕ, β) 6= ∅ by checking every possible value for β, which lies between 0 and

2n, where n is the length of the encoding of the instance. Since we need logarithmi-

cally many calls to the NP oracle (to Weak Implementation), in the end we have

searching procedure that runs in polynomial time.

114

For hardness we reduce from TSP Cost (optimal travelling salesman problem)

that is known to be FPNP-complete [Papadimitriou, 1994]. Given a TSP Cost in-

stance (G, c), G = (V,E) is a graph, c : E → Z is a cost function. We assume

that WI(G, ϕ, β) is efficient. To encode TSP Cost instance, we construct a game G
and GR(1) formula ϕ, such that the optimum budget β corresponds to the value of

optimum tour. Let G be such a game where

• N = {1},

• St = {(v, e) : v ∈ V ∧ e ∈ in(v)} ∪ {(sink, ε)},

• s0 can be chosen arbitrarily from St \ {(sink, ε)},

• for each state (v, e) ∈ St and edge e′ ∈ E ∪ {ε}

– tr((v, e), e′) = (trg(e′), e′), if v 6= sink and e′ 6= ε,

– tr((v, e), e′) = (sink, ε), otherwise;

• for each state (v, e) ∈ St

– w1((v, e)) = max{c(e′) : e′ ∈ E} − c(e), if v 6= sink,

– w1((v, e)) = max{c(e′) : e′ ∈ E}, otherwise;

• the payoff of player 1 for a path π in G is pay1(π) = mp(w1(π)),

• for each state (v, e) ∈ St, the set of actions available to player 1 is out(v)∪ {ε},

• for each state (v, e) ∈ St, λ((v, e)) = v.

Furthermore, let ϕ :=
∧
v∈V GF v. The construction is now complete, and is polyno-

mial to the size of (G, c).

Now, consider the smallest cost(κ), κ ∈ WI(G, ϕ, β). We argue that cost(κ) is

indeed the lowest value such that a tour in G is attainable. Suppose for contradiction,

that there exists κ′ such that cost(κ′) < cost(κ). Let π′ be a path in (G, κ′) and

z1 = w1((sink, ε)) the largest value player 1 can get by deviating from π′. We have

pay1(π′) < z1, and since for every (v, e) ∈ St there exists an edge to (sink, ε), thus

player 1 would deviate to (sink, ε) and stay there forever. This deviation means that

ϕ is not satisfied, which is a contradiction to κ′ ∈ WI(G, ϕ, β). The construction of

ϕ also ensures that the path is a valid tour, i.e., the tour visits every city at least

once. Notice that ϕ does not guarantee a Hamiltonian cycle. However, removing the

condition of visiting each city only once does not remove the hardness, since Euclidean

115

TSP is NP-hard [Garey et al., 1976, Papadimitriou, 1977]. Therefore, in the planar

case there is an optimal tour that visits each city only once, or otherwise, by the

triangle inequality, skipping a repeated visit would not increase the cost. Finally,

since WI(G, ϕ, β) is efficient, we have β to be exactly the value of the optimum tour

in the corresponding TSP Cost instance.

Corollary 26. Exact-WI with GR(1) specifications is DP-complete.

Proof. For membership, observe that an input is a “yes” instance of Exact-WI if

and only if it is a “yes” instance of Weak Implementation and a “yes” instance

of Weak Implementation Complement (the problem where one asks whether

WI(G, ϕ, β) = ∅). Since the former problem is in NP and the latter problem is in

coNP, membership in DP follows. For the lower bound, we use the same reduction

technique as in Theorem 25, and reduce from Exact TSP, a problem known to be

DP-hard [Papadimitriou, 1994, Papadimitriou and Yannakakis, 1984].

Following [Papadimitriou, 1984], we may naturally ask whether the optimal solu-

tion given by Opt-WI is unique. We call this problem UOpt-WI. For some fixed

budget β, it may be the case that for two subsidy schemes κ, κ′ ∈ WI(G, ϕ, β) – we

assume the implementation is efficient – we have κ 6= κ′ and cost(κ) = cost(κ′). With

LTL specifications, it is not difficult to see that we can solve UOpt-WI in polynomial

space. Therefore, we have the following result.

Corollary 27. UOpt-WI with LTL specifications is PSPACE-complete.

For GR(1) specifications, we reason about UOpt-WI using the following proce-

dure:

1. Find the exact budget using binary search and Weak Implementation as an

oracle;

2. Use an NP oracle once to guess two distinct subsidy schemes with precisely this

budget; if no such subsidy schemes exist, return “yes”; otherwise, return “no”.

The above decision procedure clearly is in ∆P
2 (for the upper bound). Furthermore,

since Theorem 25 implies ∆P
2 -hardness [Krentel, 1988] (for the lower bound), we have

the following corollary.

Corollary 28. UOpt-WI with GR(1) specifications is ∆P
2 -complete.

116

6.4.2 Optimality and Uniqueness in the Strong Domain

In this subsection, we study the same problems as in the previous subsection but with

respect to the Strong Implementation variant of the equilibrium design problem.

We first formally define the problems of interest and then present the two first results.

Definition 36 (Opt-SI). Given a game G and a specification formula ϕ:

What is the optimum budget β such that SI(G, ϕ, β) 6= ∅?

Definition 37 (Exact-SI). Given a game G, a specification formula ϕ, and an

integer b:

Is b equal to the optimum budget for SI(G, ϕ, β) 6= ∅?

For the same reasons discussed in the weak versions of these two problems, we

can prove the following two results with respect to games with LTL specifications.

Theorem 29. Opt-SI with LTL specifications is FPSPACE-complete.

Proof. The proof is analogous to that of Theorem 23.

Corollary 30. Exact-SI with LTL specifications is PSPACE-complete.

For GR(1) specifications, observe that using the same arguments for the upper-

bound of Opt-WI with GR(1) specifications, we obtain the upper-bound for Opt-SI

with GR(1) specifications. Then, it follows that Opt-SI is in FPΣP
2 . For hardness, we

define an FPΣP
2 -complete problem, namely Weighted MinQSAT2. Recall that in

QSAT2 we are given a Boolean 3DNF formula ψ(x,y) and sets x = {x1, . . . , xn},y =

{y1, . . . , ym}, with a set of terms T = {t1, . . . , tk}. Define Weighted MinQSAT2 as

follows. Given ψ(x,y) and a weight function c : x → Z≥, Weighted MinQSAT2

is the problem of finding an assignment ~x ∈ {0, 1}n with the least total weight such

that ψ(x,y) is true for every ~y ∈ {0, 1}m. Observe that Weighted MinQSAT2

generalises MinQSAT2, which is known to be FPΣP
2 [logn]-hard [Chockler and Halpern,

2004], i.e., MinQSAT2 is an instance of Weighted MinQSAT2, where all weights

are 1.

Theorem 31. Weighted MinQSAT2 is FPΣP
2 -complete.

Proof. Membership follows from the upper-bound of MinQSAT2 [Chockler and Halpern,

2004]: since we have an exponentially large input with respect to that of MinQSAT2,

by using binary search we will need polynomially many calls to the ΣP
2 oracle. Hard-

ness is immediate [Chockler and Halpern, 2004].

117

Now that we have an FPΣP
2 -hard problem in our hands, we can proceed to deter-

mine the complexity class of Opt-SI with GR(1) specifications. For the upper bound

we one can use arguments analogous to those in Theorem 25. For the lower bound,

one can reduce from Weighted MinQSAT2. Formally, we have:

Theorem 32. Opt-SI with GR(1) specifications is FPΣP
2 -complete.

Proof. Membership uses arguments analogous to those in Theorem 25. For hard-

ness, we reduce Weighted MinQSAT2 to Opt-SI using the same techniques used

in Theorem 22 with few modifications. Given a Weighted MinQSAT2 instance

(ψ(x,y), c), we construct a game G and GR(1) formula ϕ, such that the optimum

budget β corresponds to the value of optimal solution to (ψ(x,y), c). To this end, we

may assume that SI(G, ϕ, β) is efficient and construct G with exactly the same rules

as in Theorem 22 except for the following:

• clearly the value of β is unknown,

• the initial weight for each state s ∈ St

– w1(s) = 2
3
, if s[0] = sink,

–

w1(s) =

{
−c(s[0]) + 1, if s[0] ∈ tj \ y ∧ s[0] is not negated in tj

1, if s[0] ∈ tj \ y ∧ s[0] is negated in tj;

– w1(s) = 0, otherwise;

• given a subsidy scheme κ, we update the weight for each s ∈ St such that

s[0] ∈ tj \ y, that is, an x-literal that appears in term tj

w1(s) =

{
w1(s) + κ(s), if s[0] is not negated in tj

w1(s), otherwise;

the construction is complete and polynomial to the size of (ψ(x,y), c).

Let o be the optimal solution to Weighted MinQSAT2 given the input (ψ(x,y), c).

We claim that β is exactly o. To see this, consider the smallest cost(κ), κ ∈ SI(G, ϕ, β).

We argue that this is indeed the least total weight of an assignment ~x such that

ψ(x,y) is true for every ~y. Assume towards a contradiction that cost(κ) < o. By

the construction of w1(·), there exists no π such that pay1(π) > 2
3
. Therefore, any

run π′ that ends up in sink is sustained by Nash equilibrium, which is a contradic-

tion to κ ∈ SI(G, ϕ, β). Now, since SI(G, ϕ, β) is efficient, by definition, there exists

118

no κ′ ∈ SI(G, ϕ, β) such that cost(κ′) < cost(κ). Thus we have β equals to o as

required.

Corollary 33. Exact-SI with GR(1) specifications is DP
2 -complete.

Proof. Membership follows from the fact that an input is a “yes” instance of Exact-

SI (with GR(1) specifications) if and only if it is a “yes” instance of Strong Imple-

mentation and a “yes” instance of Strong Implementation Complement, the

decision problem where we ask SI(G, ϕ, β) = ∅ instead. The lower bound follows from

the hardness of Strong Implementation and Strong Implementation Com-

plement problems, which immediately implies DP
2 -hardness [Aleksandrowicz et al.,

2017, Lemma 3.2].

Furthermore, analogous to UOpt-WI, we also have the following corollaries.

Corollary 34. UOpt-SI with LTL specifications is PSPACE-complete.

Corollary 35. UOpt-SI with GR(1) specifications is ∆P
3 -complete.

6.5 Summary

In this chapter, we model agents as synchronously executing concurrent processes,

with each agent receiving an integer payoff for every state the overall system visits;

the overall payoff an agent receives over an infinite computation path is then defined

to be the mean payoff over this path. While agents (naturally) seek to maximise

their individual mean payoff, the designer of the subsidy scheme wishes to see some

temporal logic formula satisfied, either on some or on every Nash equilibrium of the

game.

With this model, we assume that the designer—an external principal—has a fi-

nite budget that is available for making subsidies, and this budget can be allocated

across agent/state pairs. By allocating this budget appropriately, the principal can

incentivise players away from some states and towards others. Since the principal has

some temporal logic goal formula, it desires to allocate subsidies so that players are

rationally incentivised to choose strategies so that the principal’s temporal logic goal

formula is satisfied in the path that would result from executing the strategies. For

this general problem, following [Wooldridge et al., 2013], we identify two variants of

the principal’s mechanism design problem, which we refer to as Weak Implemen-

tation and Strong Implementation. In the Weak variant, we ask whether the

principal can allocate the budget so that the goal is achieved on some computation

119

LTL Spec. GR(1) Spec.

Weak Implementation PSPACE-complete (Thm. 19) NP-complete (Thm. 20)

Strong Implementation PSPACE-complete (Cor. 21) ΣP
2 -complete (Thm. 22)

Opt-WI FPSPACE-complete (Thm. 23) FPNP-complete (Thm. 25)

Opt-SI FPSPACE-complete (Thm. 29) FPΣP
2 -complete (Thm. 32)

Exact-WI PSPACE-complete (Cor. 24) DP-complete (Cor. 26)

Exact-SI PSPACE-complete (Cor. 30) DP
2 -complete (Cor. 33)

UOpt-WI PSPACE-complete (Cor. 27) ∆P
2 -complete (Cor. 28)

UOpt-SI PSPACE-complete (Cor. 34) ∆P
3 -complete (Cor. 35)

Table 6.1: Summary of main complexity results.

path that would be generated by Nash equilibrium strategies in the resulting system;

in the Strong variation, we ask whether the principal can allocate the budget so

that the resulting system has at least one Nash equilibrium, and moreover the tem-

poral logic goal is satisfied on all paths that could be generated by Nash equilibrium

strategies. For these two problems, we consider goals specified by LTL formulae or

GR(1) formulae [Bloem et al., 2012], give algorithms for each case, and classify the

complexity of the problem. While LTL is a natural language for the specification of

properties of concurrent and multi-agent systems, GR(1) is an LTL fragment that can

be used to easily express several prefix-independent properties of computation paths

of reactive systems, such as ω-regular properties often used in automated formal ver-

ification. We then go on to study variations of these two problems, for example

considering optimality and uniqueness of solutions, and show that the complexities

of all such problems lie within the polynomial hierarchy, thus making them poten-

tially amenable to efficient practical implementations. Table 6.1 summarises the main

computational complexity results in this chapter.

120

Chapter 7

Implementation & Evaluation

In this chapter we present EVE (Equilibrium Verification Environment), a formal

verification tool for the automated analysis of temporal equilibrium properties of

concurrent and multi-agent systems. Systems are modelled using the Simple Reac-

tive Module Language (SRML) as a collection of independent system components

(players/agents in a game.) Players’ goals are expressed using Linear Temporal Logic

(LTL) formulae. EVE can be used to check the existence of pure strategy Nash equi-

libria in such systems and verify which temporal logic properties are satisfied in the

equilibria. Part of this chapter appeared in the proceedings of ATVA’18 [Gutierrez

et al., 2018a].

7.1 Description

Once a multi-agent system is modelled in SRML, it can be seen as a multi-player game

in which players (the modules) use strategies to resolve the non-deterministic choices

in the system. EVE uses Algorithm 9 to solve Non-Emptiness. The main idea behind

this algorithm is illustrated in Figure 7.1. The general flow of the implementation is

as follows. Let GLTL be a game, modelled using SRML, with a set of players/modules

N = {1, . . . , n} and LTL goals Γ = {γ1, . . . , γn}, one for each player. Using GLTL

we construct an associated concurrent game with parity goals GPAR in order to shift

reasoning on the set of Nash equilibria of GLTL into the set of Nash equilibria of

GPAR. The basic idea of this construction is, firstly, to transform all LTL goals in

GLTL into deterministic parity word (DPW) automata. To do this, we use LTL2BA

tool [Gastin and Oddoux, 2001, Gastin and Oddoux, 2019] to transform the formulae

into nondeterministic Büchi word (NBW) automata. From NBWs, we construct the

associated deterministic parity word (DPW) automata via construction described in

[Piterman, 2007]. Secondly, to perform a product construction of the Kripke structure

121

GLTL

Kripke structure

(γi)i∈N

LTL goals

(Ai)i∈N

DPWs

⊗ G−LPAR

s0 si

GPAR

ρ

Figure 7.1: High-level workflow of EVE.

that represents GLTL with the collection of DPWs in which the set of Nash equilibria of

the input game is preserved. With GPAR in our hands, we can then reason about Nash

equilibria by solving a collection of parity games. To solve these parity games, we

use PGSolver tool [Friedmann and Lange, 2010, PGSolver, 2019]. EVE then iterates

through all possible set of “winners” W ⊆ N (Algorithm 9 line 4) and computes a

punishment region Punj(GPAR) for each j ∈ L = N\W , with which a reduced parity

game G−LPAR =
⋂
j∈L Punj(GPAR) is built. Notice that for each player j, Punj(GPAR)

need only computed once and can be stored, thus resulting in a more efficient running

time. Lastly, EVE checks whether there exists a path ρ in G−LPAR that satisfies the goals

of each i ∈ W . To do this, we translate G−LPAR into a deterministic Streett automata,

whose language is empty if and only if so is the set of Nash equilibria of GPAR. For

E-Nash problem, we simply need to find a run in the witness returned when we check

for Non-Emptiness; this can be done via automata intersection1. This algorithm

runs in doubly exponential time, matching the optimal upper bound of the problem

[Mogavero et al., 2014]. We obtain a doubly exponential blowup when converting LTL

goals to DPWs. Computing punishment regions takes exponential time in the number

of players and parity game priorities, while checking Streett automata emptyness can

be done in polynomial time, thus resulting in an overall 2EXPTIME algorithm.

7.2 Features & Usage

EVE was developed in Python and can be used via webservice from eve.cs.ox.ac.

uk. EVE takes as input a concurrent and multi-agent system described in SRML

1For A-Nash is straightforward, since it is the dual of E-Nash.

122

eve.cs.ox.ac.uk
eve.cs.ox.ac.uk

code, with player goals and a property ϕ to be checked specified in LTL. For Non-

Emptiness, EVE returns “YES” (along with a set of winning players W) if the set

of Nash equilibria in the system is not empty, and returns “NO” otherwise. For

E-Nash (A-Nash), EVE returns “YES” if ϕ holds on some (all) Nash equilibria of

the system, and “NO” otherwise. Moreover, EVE returns a witness for every “YES”

instance, which also is the synthesised strategy profile. EVE is open-source and the

code is available from https://github.com/eve-mas/eve-parity. To install EVE,

we need the following modules:

• OPAM,

• OCaml version 4.03.x or later,

• Cairo,

• IGraph.

More detailed installation steps can be found in https://github.com/eve-mas/

eve-parity/blob/master/README.md.

7.3 Case Studies

In this section, we present two case studies from the literature of concurrent and

distributed systems to show the practical usage of EVE. Among other things, these

two examples differ in the way they are modelled as a concurrent game. While the

first one is played in an arena implicitly given by the specification of the players in the

game (as done in [Gutierrez et al., 2017b]), the second and third ones are played on a

graph, e.g., as done in [Alur et al., 2002] with the use of concurrent game structures.

Both of these modelling approaches can be used within our tool. We will also use

these two examples to evaluate EVE’s performance in practice and compare it against

MCMAS and PRALINE in Section 7.4. It is important to note that, while MCMAS

can be used to solve problems in rational verification, it is tailored to reason about

systems with imperfect information setting. As such, the encoding of the benchmarks

used in the experiments might inadvertently give a slight disadvantage for MCMAS.

7.3.1 Gossip Protocol

These are a class of networking and communication protocols that mimic the way

social networks disseminate information. They have been used to solve problems

123

https://github.com/eve-mas/eve-parity
https://github.com/eve-mas/eve-parity/blob/master/README.md
https://github.com/eve-mas/eve-parity/blob/master/README.md

Service

RM

RM RM

FE FE

gossip

query update

query update

Clients

Figure 7.2: Gossip framework structure.

module RM1 controls s1

init

:: true ∼> s1’:=true;

update

:: s1 ∼> s1’:=false;

:: s1 ∼> s1’:=true;

:: !s1 and (!s2 or ... or !sn)

∼> s1’:=true;

goal

:: G F (!s1);

Figure 7.3: SRML code modelling RM1.

in many large-scale distributed systems, such as peer-to-peer and cloud computing

systems. Ladin et al. [Ladin et al., 1992] developed a framework to provide high avail-

ability services via replication which is based on the gossip approach first introduced

in [Fischer and Michael, 1982, Wuu and Bernstein, 1984]. The main feature of this

framework is the use of replica managers (RMs) which exchange “gossip” messages

periodically in order to keep the data updated. The architecture of such an approach

is shown in Figure 7.2.

We can model each RM as a module in SRML as follows: (1) When in servicing

mode, an RM can choose either to keep in servicing mode or to switch to gossiping

mode; (2) If it is in gossiping mode and there is at least another RM also in gossiping

mode2, since the information during gossip exchange is of (small) bounded size, it

goes back to servicing mode in the subsequent step. We then set the goal of each RM

to be able to gossip infinitely often. As shown in Figure 7.3, the module RM1 controls

a variable: s1. Its value being true signifies that RM1 is in servicing mode; otherwise,

2The core of the protocol involves (at least) pairwise interactions periodically.

124

q1

q2

qn−2

qn−1

qn

q0

Figure 7.4: Gifford’s protocol modelled as a game.

it is in gossiping mode. Behaviour (1) is reflected in the first and second update

commands, while behaviour (2) is reflected in the third update command. The goal

of RM1 is specified with the LTL formula GF ¬ s1, which expresses that RM1’s goal is

to gossip infinitely often: “always” (G) “eventually” (F) gossip (¬ s1).

Observe that with all RMs rationally pursuing their goals, they will adopt any

strategy which induces a run where each RM can gossip (with at least one other

RM) infinitely often. In fact, this kind of game-like modelling gives rise to a powerful

characteristic: on all runs that are sustained by a Nash equilibrium, the distributed

system is guaranteed to have two crucial non-starvation/liveness properties: RMs

can gossip infinitely often and clients can be served infinitely often. Indeed, these

properties are verified in the experiments; with E-Nash: no Nash equilibrium sustains

“all RMs forever gossiping”; and with A-Nash: in all Nash equilibria at least one of

the RM is in servicing mode infinitely often. We also notice that each RM is modelled

as a non-deterministic open system: non-determinism is used in the first two updated

commands, as they have the same guard s1 and therefore will be both enabled at

the same time; and the system is open since each module’s state space and choices

depend on the states of other modules, as reflected by the third updated command.

7.3.2 Replica Control

Consensus is a key issue in distributed computing and multi-agent systems. An

important application domain is in maintaining data consistency. Gifford [Gifford,

1979] proposed a quorum-based voting protocol to ensure data consistency by not

allowing more than one processes to read/write a data item concurrently. To do this,

each copy of a replicated item is assigned a vote.

We can model a (modified version of) Gifford’s protocol as a game as follows. The

set of players N = {1, . . . , n} in the game is arranged in a request queue represented

by the sequence of states q1, . . . , qn, where qi means that player i is requesting to

125

read/write the data item. At state qi, other players in N\{i} then can vote whether

to allow player i to read/write. If the majority of players in N vote “yes”, then the

transition goes to q0, i.e., player i is allowed to read/write, and otherwise it goes to

qi+1
3. The voting process then restarts from q1. The protocol’s structure is shown in

Figure 7.4. Notice that at the last state, qn, there is only one outgoing arrow to q0. As

in the previous example, the goal of each player i is to visit q0 right after qi infinitely

often, so that the desired behaviour of the system is sustained on all Nash equilibria

of the system: a data item is not concurrently accessed by two different processes

and the data is updated in every round. The associated temporal properties are

automatically verified in the experiments in Section 7.4.1. Specifically, the temporal

properties we check are as follows. With E-Nash: there is no Nash equlibrium in

which the data is never updated; and, with A-Nash: on all Nash equilibria, for each

player, its request will be granted infinitely often. Also, in this example, we define a

module, called “Environment”, which is used to represent the underlying concurrent

game structure, shown in Figure 7.4, where the game is played.

7.4 Evaluation

7.4.1 Experiment I

In order to evaluate the practical preformance of our tool and approach (against

MCMAS and PRALINE), we present results on the temporal equilibrium analysis for

the examples in Section 7.3. We ran the tools on the two examples with different

numbers of players (“P”), states (“S”), and edges (“E”). The experiments were

obtained on a PC with Intel i5-4690S CPU 3.20 GHz machine with 8 GB of RAM

running Linux kernel version 4.12.14-300.fc26.x86-64. We report the running time4

for solving Non-Emptiness (“ν”), E-Nash (“ε”), and A-Nash (“α”). For the last

two problems, since there is no direct support in PRALINE and MCMAS, we used

the reduction of E/A-Nash to Non-Emptiness presented in [Gao et al., 2017].

Time-out (“TO”) was fixed to be 7200 seconds.

From the experiment results shown in Table 7.1 and 7.2, we observe that, in

general, EVE has the best performance, followed by PRALINE and MCMAS. Although

PRALINE performed better than MCMAS, both struggled (timed-out) with inputs

3We assume arithmetic modulo (|N|+ 1) in this example.
4To carry out a fairer comparison (since PRALINE does not accept LTL goals), we added to

PRALINE’s running time the time needed to convert LTL games into its input.

126

Table 7.1: Gossip Protocol experiment results.

P S E
EVE PRALINE MCMAS

ν (s) ε (s) α (s) ν (s) ε (s) α (s) ν (s) ε (s) α (s)

2 4 9 0.02 0.24 0.08 0.02 1.71 1.73 0.01 0.01 0.01

3 8 27 0.09 0.43 0.26 0.33 26.74 27.85 0.02 0.06 0.06

4 16 81 0.42 3.51 1.41 0.76 547.97 548.82 760.65 3257.56 3272.57

5 32 243 2.30 35.80 25.77 10.06 TO TO TO TO TO

6 64 729 16.63 633.68 336.42 255.02 TO TO TO TO TO

7 128 2187 203.05 TO TO 5156.48 TO TO TO TO TO

8 256 6561 4697.49 TO TO TO TO TO TO TO TO

Table 7.2: Replica control experiment results.

P S E
EVE PRALINE MCMAS

ν (s) ε (s) α (s) ν (s) ε (s) α (s) ν (s) ε (s) α (s)

2 3 8 0.04 0.11 0.10 0.05 0.64 0.74 0.01 0.01 0.02

3 4 20 0.11 1.53 0.22 0.12 4.96 5.46 0.02 0.06 0.11

4 5 48 0.34 1.73 0.68 0.56 65.50 67.45 1.99 4.15 11.28

5 6 112 1.43 2.66 2.91 6.86 1546.90 1554.80 1728.73 6590.53 TO

6 7 256 5.87 13.69 16.03 94.39 TO TO TO TO TO

7 8 576 32.84 76.50 102.12 2159.88 TO TO TO TO TO

8 9 1280 166.60 485.99 746.55 TO TO TO TO TO TO

with more than 100 edges, while EVE could handle up to 6000 edges (for Non-

Emptiness).

7.4.2 Experiment II

This experiment is taken from the motivating examples in [Gutierrez et al., 2017a].

In this experiment, unlike in previous ones, EVE manages to compute a Nash equi-

librium in bisimulation-invariant strategies, while PRALINE and MCMAS do not. In

this experiment, we extended the number of states by adding more layers to the

game structures used there in order to test the practical performance of EVE, MC-

MAS, and PRALINE. The experiments were performed on a PC with Intel i7-4702MQ

CPU 2.20GHz machine with 12GB of RAM running Linux kernel version 4.14.16-

300.fc26.x86-64. We divided the test cases based on the number of Kripke states and

127

Table 7.3: Example with no Nash equilibrium.

states edges
MCMAS EVE PRALINE

time (s) NE time (s) NE time (s) NE

5 80 0.04 No 0.75 Yes 0.77 No

8 128 0.24 No 2.99 Yes 2.06 No

11 176 6.28 No 3.86 Yes 4.42 No

14 224 273.14 No 7.46 Yes 8.53 No

17 272 TO – 13.31 Yes 15.33 No
...

...
...

...
...

...
...

...

50 800 TO – 655.80 Yes 789.77 No

Table 7.4: Example with Nash equilibria

states edges
MCMAS EVE PRALINE

time (s) NE time (s) NE time (s) NE

6 96 0.02 Yes 1.09 Yes 1.19 Yes

9 144 0.77 Yes 3.36 Yes 3.76 Yes

12 192 65.31 No 7.45 Yes 8.89 Yes

15 240 TO – 15.52 Yes 17.72 Yes

18 288 TO – 30.06 Yes 30.53 Yes
...

...
...

...
...

...
...

...

51 816 TO – 1314.47 Yes 1563.79 Yes

edges; then, for each case, we report (i) the total running time5 (“time”) and (ii)

whether the tools find any Nash equilibria (“NE”).

Table 7.3 shows the results of the experiments on the example in which the model

of strategies that depends only on the run (sequence of states) of the game (called

run-based strategies in [Gutierrez et al., 2017a]) cannot sustain any Nash equilibria,

a model of strategies that is not invariant under bisimilarity. Indeed, since MCMAS

and PRALINE use this model of strategies, both did not find any Nash equilibria in

the game, as shown in Table 7.3. EVE, which uses a model of strategies that not only

depends on the run of the game but also on the actions of players (a bisimulation-

invariant model of strategies called computation-based in [Gutierrez et al., 2017a]),

found a Nash equilibrium in the game. We can also see that EVE outperformed

5Similarly to Experiment I (Section 7.4.1), we added to PRALINE’s running time the time needed
to convert LTL games into its input to carry out a fairer comparison.

128

MCMAS on games with 14 or more states. In fact, MCMAS timed-out6 on games

with 17 states or more, while EVE kept working efficiently for games of bigger size.

We can also observe that PRALINE performed almost as efficiently as EVE in this

experiment, although EVE performed better in both small and large instances of

these games.

In Table 7.4, we used the example in which Nash equilibria is sustained in run-

based strategies. As shown in the table, MCMAS found Nash equilibria in games with

6 and 9 states. However, since MCMAS uses imperfect recall, when the third layer

was added (case with 12 states in Table 7.4) to the game, it could not find any Nash

equilibria. Regarding running times, EVE outperformed MCMAS from the game with

12 states and beyond, where MCMAS timed-out on games with 15 or more states. As

for PRALINE, it performed comparably to EVE in this experiment, but again, EVE

performed better in all instances.

7.4.3 Experiment III

In this experiment, we have two agents inhabiting a grid world with dimensions n×n.

Initially, the agents are located at opposing corners of the grid; specifically, agent 1

is located at the top-left corner (coordinate (0, 0)) and agent 2 at the bottom-right

corner (n− 1, n− 1). The agents are each able to move around the grid in directions

north, south, east, and west. The goal of each agent is to reach the opposite corner,

that is, agent 1’s goal is to reach position (n− 1, n− 1), and agent 2’s goal is to reach

position (0, 0). A number of obstacles are also placed (uniformly) randomly on the

grid. The agents are not allowed to move into a coordinate occupied by an obstacle,

the other agent, or outside the grid world. We used a binary encoding to represent

the spatial information of the grid world which includes the grid coordinates, as well

as the obstacles and the agents locations.

To make it clearer, consider the example shown in Figure 7.5; a (grey) filled square

depicts an obstacle. Agent 1, depicted by �, can move north to (2, 0), south to (2, 2),

east to (3, 1), and west to (1, 1). Whereas agent 2, depicted by ©, can only move

north to (0, 1) and south to (0, 3) (she cannot move west because it is outside the

world, nor east because there is an obstacle.)

In this experiment we make the following assumptions: (1) at each timestep, each

agent has to make a move, that is, she cannot stay at the same position for two

consecutive timesteps, and she can only move at most one step; (2) the goal of each

6We fixed the time-out value to be 3600 seconds (1 hour).

129

xy
0 1 2 3

0

1

2

3

Figure 7.5: Example of a 4× 4 grid world.

xy
0 1 2 3

0

1

2

3

Figure 7.6: Example of a 4× 4 grid world without “safe” Nash equilibria.

agent is, as stated previously, to eventually reach the opposite corner of her initial

position. From system design point of view, the question that may be asked is: can

we synthesise a strategy profile such that it induces a stable (Nash equilibrium) run

and at the same time ensures that the agents never crash into each other? We can

translate this question into an E-Nash instance with the property to be checked is

“two agents never occupying the same coordinate at the same time”, in other words,

two agents never crash into each other.

Checking the existence of such a strategy profile is not trivial. For instance, the

xy
0 1 2 3

0

1

2

3

Figure 7.7: A 4× 4 grid world with safe Nash equilibrium.

130

Table 7.5: Grid world experiment results.

Size # Obs KS KE GS

3 3 15(13, 18) 44(32, 72) 60(53, 73)

4 6 40(32, 52) 150(98, 200) 156(121, 209)

5 10 94(61, 125) 398(242, 512) 376(453, 741)

6 15 155(113, 185) 655(450, 800) 619(453, 741)

7 21 228(181, 290) 994(800, 1250) 909(725, 1161)

8 28 491(394, 666) 2297(1922, 2888) 1963(1577, 2665)

9 36 564(269, 765) 2687(1352, 3698) 2256(1077, 3061)

10 45 916(730, 1258) 4780(3528, 6498) 3657(2921, 5033)

Size GE ν (s) ε (s)

3 173(129, 289) 0.44(0.19, 1.14) 1.21(0.5, 2.63)

4 595(379, 801) 0.98(0.63, 1.16) 1.57(1.01, 2.24)

5 1591(969, 2049) 4.73(2.62, 6.22) 22.51(18.22, 26.25)

6 2622(1801, 3201) 9.53(7.13, 11.49) 32.32(26.05, 37.35)

7 3969(3161, 5001) 17.69(13.81, 21.58) 48.90(39.70, 59.50)

8 9190(7689, 11553) 50.91(38.38, 72.49) 121.33(95.03, 167.25)

9 10748(5409, 14793) 100.94(45.81, 137.91) 6002.80(5477.63, 6374.26)

10 19102(14113, 25993) 211.30(152.74, 311.43) 6871.16(6340.64, 7650.87)

configuration in Figure 7.6 does not admit any safe Nash equilibrium runs, that is,

where all agents get their goals achieved without crashing into each other. On the

other hand, the configuration in Figure 7.7, admits safe Nash equilibrium. Thus,

having a tool to verify and synthesise such scenario is desirable.

The experiment was obtained on a PC with Intel i5-4690S CPU 3.20 GHz machine

with 8 GB of RAM running Linux kernel version 4.12.14-300.fc26.x86-64. We varied

the size of the grid world (“size”) from 3 × 3 to 10 × 10, each with a fixed number

of obstacles (“# Obs”), randomly distributed on the grid. We report the number

Kripke states (“KS”), Kripke edges (“KE”), GPAR states (“GS”), GPAR edges (“GE”),

Non-Emptiness execution time (“ν”), and E-Nash execution time (“ε”). We ran

the experiment for five replications, and report the average (ave), minimum (min),

and maximum (max) times from the replications. The results are reported in Table

7.5, with the following format: ave(min, max).

From the experiment results, we see that EVE works well for Non-Emptiness up

until size 10. From the plots in Figure 7.8, we can clearly see that the values of each

variable, except for ε, grow exponentially. For ε (E-Nash), however, it seems to grow

131

3 4 5 6 7 8 9 10

100

101

102

103

104

105

size

KS
KE
GS
GE
ν
ε

Figure 7.8: Plots from Table 7.5. Y-axis is in logarithmic scale.

faster than the rest. Specifically, it is clearly visible in transitions between numbers

that have different size of bit representation, i.e., 4 to 5 and 8 to 97. These jumps

correspond to the time used to build deterministic parity automata on words from

LTL properties to be checked in E-Nash, which is essentially, bit-for-bit comparisons

between the position of agent 1 and 2.

7Since the grid coordinate index starts at 0, the “actual” transitions are 3 to 4 and 7 to 8.

132

Chapter 8

Conclusions

This chapter concludes the main part of the thesis by reviewing the contributions that

have been put forward, then providing some discussion to put the work in this thesis

into larger context, and finally presenting some pointers to possible future research

directions.

8.1 Contributions

The aim of this thesis has been the development of techniques and tools for rational

verification, as well as the study of some tractable cases of rational verification and

equilibrium design, of multi-agent systems. The main contributions to this area of

research are summarised below:

• The theoretical contributions of this thesis are as follows:

– Development of algorithmic techniques to solve key decision problems in

the rational verification framework. The techniques used in this thesis

employ parity conditions to reasons about game with perfect recall se-

mantics. In particular, in Chapter 4, we prove that our construction of

concurrent parity game preserves the set of Nash equilibria in the original

game (Theorem 8). With this result, we then provide Nash equilibrium

characterisation (Theorem 11) by reasoning via a collection of (turn-based)

parity games. The algorithmic approach is reported in Algorithm 9. The

approach is efficient in a sense that it matches the theoretical lower-bound

of 2EXPTIME;

– Identification of computationally tractable cases for rational verification.

As reported in Chapter 5, by using a fragment of LTL, we can decrease the

133

complexity of E-Nash problem to PSPACE-complete (Corollary 14), and

even to fixed-parameter tractable (Theorem 15). We also introduce games

with mean-payoff objective and prove that the combination of mean-payoff

goals with LTL specification, and mean-payoff goals with GR(1) specifica-

tion, allow us to decrease the complexity to PSPACE-complete (Corol-

lary 17) and NP-complete (Theorem 18), respectively;

– Development of the concept of equilibrium design for multi-agent systems.

We introduce two decision problems called Weak Implementation and

Strong Implementation in Chapter 6 and prove that with GR(1) spec-

ification, the complexities belong to NP-complete (Theorem 20) and ΣP
2 -

complete (Theorem 22), respectively. We further prove that the extensions

of the aforementioned problems, such as the optimality (Theorems 25 and

32), exactness (Corollaries 26 and 33), and uniqeness (Corollaries 28 and

35), all lie within the polynomial hierarchy.

• Development of EVE (Equilibrium Verification Environment): EVE is a tool

developed in Python that can be used for the automated analysis of tempo-

ral equilibrium properties of concurrent and multi-agent systems. Systems are

modelled using SRML as a collection of independent components (players/a-

gents in a game) and players’ goals are expressed using LTL formulae.

• Application examples: various multi-agent systems scenarios have been mod-

elled in SRML and checked by EVE, including communication and networking

protocols, bisimilar concurrent-game structures, and multi-robot-like systems.

Experimental results have been presented, and performance comparison to other

tools (MCMAS and PRALINE) also showed the advantage of our approach (EVE).

The main results of this thesis are also contained in: [Gutierrez et al., 2019b,

Gutierrez et al., 2018a, Gutierrez et al., 2019d, Gutierrez et al., 2019c]. Also, the tool

EVE can be found at: http://eve.cs.ox.ac.uk/.

8.2 Discussion

Equilibrium Analysis in Multi-Agent Systems. Over the past decade, there

has been increasing interest in the use of game-theoretic equilibrium concepts such

as Nash equilibrium in the analysis of concurrent and multi-agent systems (see,

e.g., [Almagor et al., 2018, Aminof et al., 2016, Bouyer et al., 2015a, Fisman et al.,

134

http://eve.cs.ox.ac.uk/

2010, Gutierrez et al., 2017a, Gutierrez et al., 2017b, Kupferman et al., 2016]). This

work, as well as the work carried out in this thesis, views a concurrent system as a

game, with system components (agents) corresponding to players in the game, which

are assumed to be acting rationally in pursuit of their individual preferences. Prefer-

ences may be specified by associating with each player a temporal logic goal formula,

which the player desires to see satisfied, or by assuming that players receive rewards

in each state the system visits, and seek to maximise the average reward they receive

(the mean payoff).

The key decision problems in such settings relate to what temporal logic proper-

ties hold on computations of the system that may be generated by players choosing

strategies that form a game-theoretic (Nash) equilibrium. These problems are typi-

cally computationally complex, since they subsume temporal logic synthesis [Pnueli

and Rosner, 1989]. If players have LTL goals, for example, then checking whether an

LTL formula holds on some Nash equilibrium path in a concurrent game is 2EXPTIME-

complete [Fisman et al., 2010, Gutierrez et al., 2015b, Gutierrez et al., 2017b], rather

than only PSPACE-complete as it is the case for model checking, certainly a com-

putational barrier for the practical analysis and automated verification of reactive,

concurrent, and multi-agent systems modelled as multi-player games. Furthermore,

from verification point of view, one obvious question is whether assuming agents to

be perfectly rational is a reasonable assumption. If we view the agents as people, then

clearly using the concept of Nash equilibrium (with perfect rationality assumption)

is not appropriate [Mailath, 1998, Gigerenzer and Selten, 2002]. However, when we

consider the agents as computer programs, in principle, we can design them to act

rationally. Although, it should be noted that the expensive computational price of

rational verification (as well as, synthesis), may indicate that other (weaker) solution

concepts (e.g., approximate Equilibrium) are more appropriate with resource bounded

agents.

Automata and logic. In computer science, a common technique to reason about

Nash equilibria in multi-player games is using alternating parity automata on infinite

trees (APTs [Löding, 2012]). This approach is used to do rational synthesis [Fis-

man et al., 2010, Kupferman et al., 2016]; equilibrium checking and rational verifi-

cation [Wooldridge et al., 2016, Gutierrez et al., 2015b, Gutierrez et al., 2017b]; and

model checking of logics for strategic reasoning capable to specify the existence of a

Nash equilibrium in concurrent game structures [Alur et al., 2002], both in two-player

games [Chatterjee et al., 2010b, Finkbeiner and Schewe, 2010] and in multi-player

135

games [Laroussinie and Markey, 2015, Mogavero et al., 2014]. In cases where players’

goals are simpler than general LTL formulae, e.g., for reachability or safety goals, al-

ternating Büchi automata can be used instead [Bouyer et al., 2015a]. The technique

developed in this thesis is different from all these automata-based approaches, and in

some cases more general, as it can be used to handle either a more complex model

of strategies or a more complex type of goals, and delivers an immediate procedure

to synthesise individual strategies for players in the game, while being amenable to

implementation.

Equilibrium design vs. mechanism design – connections with Economic

theory. Although equilibrium design is closely related to mechanism design, as

typically studied in game theory [Hurwicz and Reiter, 2006], the two are not exactly

the same. Two key features in mechanism design are the following. Firstly, in a

mechanism design problem, the designer is not given a game structure, but instead

is asked to provide one; in that sense, a mechanism design problem is closer to a

rational synthesis problem [Fisman et al., 2010, Gutierrez et al., 2015b]. Secondly, in

a mechanism design problem, the designer is only interested in the game’s outcome,

which is given by the payoffs of the players in the game; however, in equilibrium

design, while the designer is interested in the payoffs of the players as these may need

to be perturbed by its budget, the designer is also interested – and in fact primarily

interested – in the satisfaction of a temporal logic goal specification, which the players

in the game do not take into consideration when choosing their individual rational

choices; in that sense, equilibrium design is closer to rational verification [Gutierrez

et al., 2017b] than to mechanism design. Thus, equilibrium design is a new com-

putational problem that sits somewhere in the middle between mechanism design

and rational verification/synthesis. Technically, in equilibrium design we go beyond

rational synthesis and verification through the additional design of subsidy schemes

for incentivising behaviours in a concurrent and multi-agent system, but we do not

require such subsidy schemes to be incentive compatible mechanisms, as in mecha-

nism design theory, since the principal may want to reward only a group of players

in the game so that its temporal logic goal is satisfied, while rewarding other players

in the game in an unfair way – thus, leading to a game with a suboptimal social

welfare measure. In this sense, equilibrium design falls short with respect to the more

demanding social welfare requirements often found in mechanism design theory.

136

Equilibrium design vs. rational verification – connections with Computer

science. Typically, in rational synthesis and verification [Fisman et al., 2010, Gutier-

rez et al., 2015b, Gutierrez et al., 2017b, Kupferman et al., 2016] we want to check

whether a property is satisfied on some/every Nash equilibrium computation run of

a reactive, concurrent, and multi-agent system. These verification problems are pri-

marily concerned with qualitative properties of a system, while assuming rationality

of system components. However, little attention is paid to quantitative properties of

the system. This drawback has been recently identified and some work has been done

to cope with questions where both qualitative and quantitative concerns are consid-

ered [Almagor et al., 2018, Bohy et al., 2013, Chatterjee and Doyen, 2012, Chatterjee

et al., 2010a, Chatterjee et al., 2005, Gutierrez et al., 2017c, Velner et al., 2015].

Equilibrium design is new and different approach where this is also the case. More

specifically, as in a mechanism design problem, through the introduction of an exter-

nal principal – the designer in the equilibrium design problem – we can account for

overall qualitative properties of a system (the principal’s goal given by an LTL or a

GR(1) specification) as well as for quantitative concerns (optimality of solutions con-

strained by the budget to allocate additional rewards/resources). Our framework also

mixes qualitative and quantitative features in a different way: while system compo-

nents are only interested in maximising a quantitative payoff, the designer is primarily

concerned about the satisfaction of a qualitative (logic) property of the system, and

only secondarily about doing it in a quantitatively optimal way.

Equilibrium design vs. repair games and normative systems – connections

with AI. In recent years, there has been an interest in the analysis of rational out-

comes of multi-agent systems modelled as multi-player games. This has been done

both with modelling and with verification purposes. In those multi-agent settings,

where AI agents can be represented as players in a multi-player game, a focus of inter-

est is on the analysis of (Nash) equilibria in such games [Bouyer et al., 2015a, Gutierrez

et al., 2017b]. However, it is often the case that the existence of Nash equilibria in a

multi-player game with temporal logic goals may not be guaranteed [Gutierrez et al.,

2015b, Gutierrez et al., 2017b]. For this reason, there has been already some work on

the introduction of desirable Nash equilibria in multi-player games [Almagor et al.,

2015, Perelli, 2019]. This problem has been studied as a repair problem [Almagor

et al., 2015] in which either the preferences of the players (given by winning condi-

tions) or the actions available in the game are modified; the latter one also being

achieved with the use of normative systems [Perelli, 2019]. In equilibrium design, we

137

do not directly modify the preferences of agents in the system, since we do not alter

their goals or choices in the game, but we indirectly influence their rational behaviour

by incentivising players to visit, or to avoid, certain states of the overall system. We

studied how to do this in an (individually) optimal way with respect to the preferences

of the principal in the equilibrium design problem. However, this may not always be

possible, for instance, because the principal’s temporal logic specification goal is just

not achievable, or because of constraints given by its limited budget.

8.3 Future Work

Chapter 4 gives a solution to the temporal equilibrium problem (both automated

synthesis and formal verification) in a noncooperative setting. In future work, we

plan to investigate the cooperative games setting [Ågotnes et al., 2009]. We also

plan to investigate if our main algorithms can be extended to decidable classes of

imperfect information games, for instance, as those studied to model the behaviour

of multi-agent systems in [Gutierrez et al., 2018b, Belardinelli et al., 2017, Aminof

et al., 2014, Berthon et al., 2017]. Considering other solution concepts, such as

subgame perfect Equilibrium (and its associated refinement concepts) may also be

an obvious future direction. From performance point of view, one may also consider

employing randomised algorithm, to carry out rational verification (c.f., [Grosu and

Smolka, 2005]). Whenever possible, such studies will be complemented with practical

implementations in EVE. Finally, extensions to epistemic systems and quantitative

information in the context of multi-agent systems may be another avenue for further

applications [Herzig et al., 2016, Belardinelli and Lomuscio, 2009].

In Chapter 5, we have identified some tractable cases for rational verification. The

existence of such cases is a good news from practical point of view. In the future, it

is worthwile to consider extending EVE to implement such algorithms.

As discussed in Chapter 6, a key difference with mechanism design is that social

welfare requirements are not considered [Maschler et al., 2013]. However, a benevolent

principal might not see optimality as an individual concern, and instead consider the

welfare of the players in the design of a subsidy scheme. In that case, concepts such

as the utilitarian social welfare may be undesirable as the social welfare maximising

the payoff received by players might allocate all the budget to only one player, and

none to the others. A potentially better option is to improve fairness in the allocation

of the budget by maximising the egalitarian social welfare. Finally, given that the

138

complexity of equilibrium design is much better than that of rational synthesis/ver-

ification, we should be able to have efficient implementations, for instance, as an

extension of EVE [Gutierrez et al., 2018a].

139

Bibliography

[ari, 1996] (1996). ARIANE 5 failure - full report. http://sunnyday.mit.edu/

accidents/Ariane5accidentreport.html. Accessed: 2017-05-15.

[lis, 2016] (2016). A collection of well-known software failures. http://www.cse.

psu.edu/~gxt29/bug/softwarebug.html. Accessed: 2017-05-15.

[Ågotnes et al., 2009] Ågotnes, T., van der Hoek, W., and Wooldridge, M. (2009).

Reasoning about coalitional games. Artificial Intelligence, 173(1):45–79.

[Agotnes and Walther, 2009] Agotnes, T. and Walther, D. (2009). A logic of strategic

ability under bounded memory. Journal of Logic, Language, and Information,

18(1):55–77.

[Aleksandrowicz et al., 2017] Aleksandrowicz, G., Chockler, H., Halpern, J. Y., and

Ivrii, A. (2017). The computational complexity of structure-based causality. Jour-

nal of Artificial Intelligence Research, 58(1):431–451.

[Almagor et al., 2015] Almagor, S., Avni, G., and Kupferman, O. (2015). Repairing

Multi-Player Games. In 26th International Conference on Concurrency Theory

(CONCUR 2015), volume 42 of Leibniz International Proceedings in Informatics

(LIPIcs), pages 325–339.

[Almagor et al., 2018] Almagor, S., Kupferman, O., and Perelli, G. (2018). Synthesis

of controllable nash equilibria in quantitative objective game. In Proceedings of the

Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-

18, pages 35–41.

[Alur et al., 2001] Alur, R., de Alfaro, L., Grosu, R., Henzinger, T. A., Kang, M.,

Kirsch, C. M., Majumdar, R., Mang, F., and Wang, B. Y. (2001). jmocha: a

model checking tool that exploits design structure. In Proceedings of the 23rd

International Conference on Software Engineering. ICSE 2001, pages 835–836.

140

http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html
http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html
http://www.cse.psu.edu/~gxt29/bug/softwarebug.html
http://www.cse.psu.edu/~gxt29/bug/softwarebug.html

[Alur and Henzinger, 1994] Alur, R. and Henzinger, T. A. (1994). A really temporal

logic. Journal of the ACM, 41(1):181–203.

[Alur and Henzinger, 1999] Alur, R. and Henzinger, T. A. (1999). Reactive modules.

Formal Methods in System Design, 15(11):7–48.

[Alur et al., 2002] Alur, R., Henzinger, T. A., and Kupferman, O. (2002).

Alternating-time temporal logic. Journal of the ACM, 49(5):672–713.

[Alur et al., 1998a] Alur, R., Henzinger, T. A., Kupferman, O., and Vardi, M. Y.

(1998a). Alternating refinement relations. In CONCUR, volume 1466 of LNCS,

pages 163–178. Springer.

[Alur et al., 1998b] Alur, R., Henzinger, T. A., Mang, F. Y. C., Qadeer, S., Raja-

mani, S. K., and Tasiran, S. (1998b). Mocha: Modularity in model checking. In

Proceedings of the 10th International Conference on Computer Aided Verification,

CAV ’98, pages 521–525.

[Aminof et al., 2016] Aminof, B., Malvone, V., Murano, A., and Rubin, S. (2016).

Graded strategy logic: Reasoning about uniqueness of nash equilibria. In Proceed-

ings of the 2016 International Conference on Autonomous Agents & Multiagent

Systems, AAMAS 2016, pages 698–706.

[Aminof et al., 2014] Aminof, B., Mogavero, F., and Murano, A. (2014). Synthesis of

hierarchical systems. Science of Computer Programming, 83:56–79.

[Arnold and Crubille, 1988] Arnold, A. and Crubille, P. (1988). A linear algorithm to

solve fixed-point equations on transition systems. Information Processing Letters,

29(2):57–66.

[Belardinelli and Lomuscio, 2009] Belardinelli, F. and Lomuscio, A. (2009). Quanti-

fied epistemic logics for reasoning about knowledge in multi-agent systems. Artifi-

cial Intelligence, 173(9-10):982–1013.

[Belardinelli et al., 2017] Belardinelli, F., Lomuscio, A., Murano, A., and Rubin, S.

(2017). Verification of multi-agent systems with imperfect information and public

actions. In Proceedings of the 16th Conference on Autonomous Agents and Multi-

Agent Systems, AAMAS ’17, pages 1268–1276.

141

[Berthon et al., 2017] Berthon, R., Maubert, B., and Murano, A. (2017). Decidability

results for atl* with imperfect information and perfect recall. In Proceedings of the

16th Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’17,

pages 1250–1258.

[Biere et al., 2003] Biere, A., Cimatti, A., Clarke, E. M., Strichman, O., and Zhu, Y.

(2003). Bounded model checking. Advances in Computers, 58:117–148.

[Binmore, 1992] Binmore, K. (1992). Fun and Games: A Text on Game Theory. D.

C. Heath and Company: Lexington, MA.

[Blackburn et al., 2001] Blackburn, P., de Rijke, M., and Venema, Y. (2001). Modal

Logic. Cambridge University Press, New York, NY, USA.

[Bloem et al., 2012] Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., and Sa’ar,

Y. (2012). Synthesis of reactive(1) designs. Journal of Computer and System

Sciences, 78(3):911–938.

[Bohy et al., 2013] Bohy, A., Bruyère, V., Filiot, E., and Raskin, J. (2013). Synthe-

sis from LTL Specifications with Mean-Payoff Objectives. In Proceedings of the

19th International Conference on Tools and Algorithms for the Construction and

Analysis of Systems, TACAS 2013, pages 169–184.

[Boker et al., 2014] Boker, U., Chatterjee, K., Henzinger, T. A., and Kupferman, O.

(2014). Temporal Specifications with Accumulative Values. ACM Transactions on

Computational Logic, 15(4):27:1–27:25.

[Bouyer et al., 2015a] Bouyer, P., Brenguier, R., Markey, N., and Ummels, M.

(2015a). Pure nash equilibria in concurrent deterministic games. Logical Meth-

ods in Computer Science, 11(2):1–72.

[Bouyer et al., 2015b] Bouyer, P., Gardy, P., and Markey, N. (2015b). Weighted

strategy logic with boolean goals over one-counter games. In 35th IARCS An-

nual Conference on Foundation of Software Technology and Theoretical Computer

Science, FSTTCS 2015, pages 69–83.

[Brafman et al., 1997] Brafman, R. I., Latombe, J.-C., Moses, Y., and Shoham, Y.

(1997). Applications of a logic of knowledge to motion planning under uncertainty.

Journal of the ACM, 44(5):633–668.

142

[Brenguier, 2013] Brenguier, R. (2013). Praline: A tool for computing nash equilib-

ria in concurrent games. In Proceedings of the 25th International Conference on

Computer Aided Verification - Volume 8044, CAV 2013, pages 890–895.

[Büchi, 1962] Büchi, J. R. (1962). On a decision method in restricted second or-

der arithmetic. In Nagel, E., Suppes, P., and Tarski, A., editors, Proceedings of

the 1960 International Congress on Logic, Methodology and Philosophy of Science

(LMPS’60), pages 1–11.

[Burch et al., 1990] Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D. L., and

Hwang, L. J. (1990). Symbolic model checking: 10ˆ20 states and beyond. In

Proceedings of the Fifth Annual Symposium on Logic in Computer Science (LICS

’90), pages 428–439.

[Calude et al., 2017] Calude, C. S., Jain, S., Khoussainov, B., Li, W., and Stephan,

F. (2017). Deciding parity games in quasipolynomial time. In Proceedings of the

49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017,

pages 252–263.

[Cermák et al., 2014] Cermák, P., Lomuscio, A., Mogavero, F., and Murano, A.

(2014). MCMAS-SLK: A model checker for the verification of strategy logic spec-

ifications. In Computer Aided Verification - 26th International Conference, CAV

2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria,

July 18-22, 2014. Proceedings, pages 525–532.

[Cermák et al., 2018] Cermák, P., Lomuscio, A., Mogavero, F., and Murano, A.

(2018). Practical verification of multi-agent systems against slk specifications. In-

formation and Computation, 261(Part):588–614.

[Chaochen et al., 1993] Chaochen, Z., Hansen, M. R., and Sestoft, P. (1993). Decid-

ability and undecidability results for duration calculus. In Proceedings of the 10th

Annual Symposium on Theoretical Aspects of Computer Science, STACS ’93, pages

58–68.

[Chaochen et al., 1991] Chaochen, Z., Hoare, C., and Ravn, A. P. (1991). A calculus

of durations. Information Processing Letters, 40(5):269 – 276.

[Chatterjee and Doyen, 2012] Chatterjee, K. and Doyen, L. (2012). Energy parity

games. Theoretical Computer Science, 458:49–60.

143

[Chatterjee et al., 2010a] Chatterjee, K., Doyen, L., Henzinger, T., and Raskin, J.

(2010a). Generalized mean-payoff and energy games. In IARCS Annual Confer-

ence on Foundations of Software Technology and Theoretical Computer Science,

FSTTCS 2010, pages 505–516.

[Chatterjee et al., 2005] Chatterjee, K., Henzinger, T. A., and Jurdzinski, M. (2005).

Mean-payoff parity games. In 20th IEEE Symposium on Logic in Computer Science

(LICS 2005), pages 178–187.

[Chatterjee et al., 2010b] Chatterjee, K., Henzinger, T. A., and Piterman, N.

(2010b). Strategy logic. Information and Computation, 208(6):677–693.

[Chen et al., 2012] Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., and Simaitis,

A. (2012). Automatic verification of competitive stochastic systems. In Flanagan,

C. and König, B., editors, Proc. 18th International Conference on Tools and Algo-

rithms for the Construction and Analysis of Systems (TACAS’12), volume 7214 of

LNCS, pages 315–330.

[Chen et al., 2013a] Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., and Simaitis,

A. (2013a). Automatic verification of competitive stochastic systems. Formal

Methods in System Design, 43(1):61–92.

[Chen et al., 2013b] Chen, T., Forejt, V., Kwiatkowska, M. Z., Parker, D., and

Simaitis, A. (2013b). Prism-games: A model checker for stochastic multi-player

games. In Tools and Algorithms for the Construction and Analysis of Systems -

19th International Conference, TACAS 2013, volume 7795 of LNCS, pages 185–

191. Springer.

[Chockler and Halpern, 2004] Chockler, H. and Halpern, J. (2004). Responsibility

and Blame: A Structural-Model Approach. Journal of Artificial Intelligence Re-

search, 22:93–115.

[Clarke and Emerson, 1981] Clarke, E. M. and Emerson, E. A. (1981). Design and

synthesis of synchronization skeletons using branching time temporal logic. In

Logics of Programs, volume 131 of LNCS, pages 52–71. Springer-Verlag: Berlin,

Germany.

[Clarke et al., 1986] Clarke, E. M., Emerson, E. A., and Sistla, A. P. (1986). Auto-

matic verification of finite-state concurrent systems using temporal logic specifica-

tions. ACM Transactions on Programming Languages and Systems, 8(2):244–263.

144

[Clarke et al., 2002] Clarke, E. M., Grumberg, O., and Peled, D. A. (2002). Model

Checking. MIT Press, Cambridge, MA, USA.

[Daniele et al., 1999] Daniele, M., Giunchiglia, F., and Vardi, M. Y. (1999). Im-

proved automata generation for linear temporal logic. In Proceedings of the 11th

International Conference on Computer Aided Verification, CAV ’99, pages 249–260.

[De Nicola and Vaandrager, 1990] De Nicola, R. and Vaandrager, F. (1990). Action

versus state based logics for transition systems. In Proceedings of the LITP Spring

School on Theoretical Computer Science on Semantics of Systems of Concurrent

Processes, pages 407–419.

[De Nicola and Vaandrager, 1995] De Nicola, R. and Vaandrager, F. W. (1995).

Three logics for branching bisimulation. Journal of the ACM, 42(2):458–487.

[Dima and Tiplea, 2011] Dima, C. and Tiplea, F. L. (2011). Model-checking ATL

under imperfect information and perfect recall semantics is undecidable. CoRR,

abs/1102.4225.

[Emerson, 1990] Emerson, E. A. (1990). Temporal and modal logic. In Handbook

of Theoretical Computer Science Volume B: Formal Models and Semantics, pages

996–1072. Elsevier Science Publishers B.V.: Amsterdam.

[Emerson and Clarke, 1980] Emerson, E. A. and Clarke, E. M. (1980). Characterizing

correctness properties of parallel programs using fixpoints. In Automata, Languages

and Programming, 7th Colloquium, ICALP, pages 169–181.

[Emerson and Halpern, 1986] Emerson, E. A. and Halpern, J. Y. (1986). “some-

times” and “not never” revisited: On branching versus linear time temporal logic.

Journal of the ACM, 33(1):151–178.

[Emerson and Jutla, 1991] Emerson, E. A. and Jutla, C. S. (1991). Tree automata,

mu-calculus and determinacy (extended abstract). In 32nd Annual Symposium on

Foundations of Computer Science, FOCS, pages 368–377.

[Engelhardt et al., 2000] Engelhardt, K., Meyden, R. v. d., and Moses, Y. (2000). A

program refinement framework supporting reasoning about knowledge and time.

In Proceedings of the Third International Conference on Foundations of Software

Science and Computation Structures, FOSSACS ’00, pages 114–129.

145

[Etessami and Holzmann, 2000] Etessami, K. and Holzmann, G. J. (2000). Optimiz-

ing büchi automata. In Proceedings of 11th International Conference Concurrency

Theory, CONCUR 2000, pages 153–167.

[Fagin et al., 1995] Fagin, R., Halpern, J. Y., Moses, Y., and Vardi, M. Y. (1995).

Reasoning About Knowledge. The MIT Press: Cambridge, MA.

[Finkbeiner and Schewe, 2010] Finkbeiner, B. and Schewe, S. (2010). Coordination

logic. In Proceedings of 24th International Workshop on Computer Science Logic,

CSL, pages 305–319.

[Fisac et al., 2019] Fisac, J. F., Bronstein, E., Stefansson, E., Sadigh, D., Sastry,

S. S., and Dragan, A. D. (2019). Hierarchical game-theoretic planning for au-

tonomous vehicles. In International Conference on Robotics and Automation, ICRA

2019, Montreal, QC, Canada, May 20-24, 2019, pages 9590–9596.

[Fischer and Michael, 1982] Fischer, M. J. and Michael, A. (1982). Sacrificing serial-

izability to attain high availability of data in an unreliable network. In Proceedings

of the 1st ACM SIGACT-SIGMOD Symposium on Principles of Database Systems,

PODS ’82, pages 70–75.

[Fisman et al., 2010] Fisman, D., Kupferman, O., and Lustig, Y. (2010). Rational

synthesis. In 16th International Conference on Tools and Algorithms for the Con-

struction and Analysis of Systems, TACAS 2010, pages 190–204.

[Friedmann and Lange, 2010] Friedmann, O. and Lange, M. (2010). The pgsolver

collection of parity game solvers – version 3.

[Fritz and Wilke, 2002] Fritz, C. and Wilke, T. (2002). State space reductions for

alternating büchi automata. In Proceedings of the 22nd Conference on Foundations

of Software Technology and Theoretical Computer Science, FSTTCS, pages 157–

168.

[Gammie and van der Meyden, 2004] Gammie, P. and van der Meyden, R. (2004).

MCK: model checking the logic of knowledge. In Proceedings of 16th International

Conference on Computer Aided Verification, CAV, pages 479–483.

[Gao et al., 2017] Gao, T., Gutierrez, J., and Wooldridge, M. J. (2017). Iterated

boolean games for rational verification. In Proceedings of the 16th Conference on

Autonomous Agents and MultiAgent Systems, AAMAS 2017, pages 705–713.

146

[Garey et al., 1976] Garey, M. R., Graham, R. L., and Johnson, D. S. (1976). Some

np-complete geometric problems. In Proceedings of the 8th Annual ACM Sympo-

sium on Theory of Computing, STOC, pages 10–22.

[Gastin and Oddoux, 2001] Gastin, P. and Oddoux, D. (2001). Fast LTL to büchi

automata translation. In Proceedings of the 13th International Conference on Com-

puter Aided Verification, CAV 2001, pages 53–65.

[Gastin and Oddoux, 2019] Gastin, P. and Oddoux, D. (2019). LTL 2 BA: fast

translation from ltl formulae to büchi automata. http://www.lsv.fr/~gastin/

ltl2ba/. Accessed: 09-09-2019.

[Gerth et al., 1995] Gerth, R., Peled, D. A., Vardi, M. Y., and Wolper, P. (1995).

Simple on-the-fly automatic verification of linear temporal logic. In Proceedings of

the 15th International Symposium on Protocol Specification, Testing and Verifica-

tion, PSTV, pages 3–18.

[Giannakopoulou and Lerda, 2002] Giannakopoulou, D. and Lerda, F. (2002). From

states to transitions: Improving translation of LTL formulae to büchi automata.

In Proceedings of the 22nd International Conference on Formal Techniques for

Networked and Distributed Systems - FORTE 2002, pages 308–326.

[Gifford, 1979] Gifford, D. K. (1979). Weighted voting for replicated data. In Pro-

ceedings of the Seventh ACM Symposium on Operating Systems Principles, SOSP

’79, pages 150–162.

[Gigerenzer and Selten, 2002] Gigerenzer, G. and Selten, R., editors (2002). Bounded

Rationality: The Adaptive Toolbox, volume 1. The MIT Press, 1 edition.

[Grosu and Smolka, 2005] Grosu, R. and Smolka, S. A. (2005). Monte carlo model

checking. In Proceedings of the 11th International Conference on Tools and Algo-

rithms for the Construction and Analysis of Systems, TACAS’05, pages 271–286.

[Gutierrez et al., 2017a] Gutierrez, J., Harrenstein, P., Perelli, G., and Wooldridge,

M. (2017a). Nash equilibrium and bisimulation invariance. In 28th International

Conference on Concurrency Theory, CONCUR 2017, pages 17:1–17:16.

[Gutierrez et al., 2019a] Gutierrez, J., Harrenstein, P., Perelli, G., and Wooldridge,

M. J. (2019a). Nash equilibrium and bisimulation invariance. Logical Methods in

Computer Science, 15(3).

147

http://www.lsv.fr/~gastin/ltl2ba/
http://www.lsv.fr/~gastin/ltl2ba/

[Gutierrez et al., 2013] Gutierrez, J., Harrenstein, P., and Wooldridge, M. (2013).

Iterated boolean games. In Proceedings of the 23rd International Joint Conference

on Artificial Intelligence, IJCAI 2013, pages 932–938.

[Gutierrez et al., 2014] Gutierrez, J., Harrenstein, P., and Wooldridge, M. (2014).

Reasoning about equilibria in game-like concurrent systems. In Proceedings of the

14th International Conference Principles of Knowledge Representation and Rea-

soning, KR 2014.

[Gutierrez et al., 2015a] Gutierrez, J., Harrenstein, P., and Wooldridge, M. (2015a).

Expresiveness and complexity results for strategic reasoning. In Proceedings of

the 26th International Conference on Concurrency Theory, CONCUR 2015, pages

268–282.

[Gutierrez et al., 2015b] Gutierrez, J., Harrenstein, P., and Wooldridge, M. (2015b).

Iterated Boolean Games. Information and Computation, 242:53–79.

[Gutierrez et al., 2017b] Gutierrez, J., Harrenstein, P., and Wooldridge, M. (2017b).

From model checking to equilibrium checking: Reactive modules for rational veri-

fication. Artificial Intelligence, 248:123 – 157.

[Gutierrez et al., 2017c] Gutierrez, J., Murano, A., Perelli, G., Rubin, S., and

Wooldridge, M. (2017c). Nash equilibria in concurrent games with lexicographic

preferences. In Proceedings of the Twenty-Sixth International Joint Conference on

Artificial Intelligence, IJCAI 2017, pages 1067–1073.

[Gutierrez et al., 2018a] Gutierrez, J., Najib, M., Perelli, G., and Wooldridge, M.

(2018a). Eve: A tool for temporal equilibrium analysis. In Automated Technology

for Verification and Analysis, ATVA 2018, pages 551–557.

[Gutierrez et al., 2019b] Gutierrez, J., Najib, M., Perelli, G., and Wooldridge, M.

(2019b). Automated temporal equilibrium analysis: Verification and synthesis of

multi-player games. Under Review.

[Gutierrez et al., 2019c] Gutierrez, J., Najib, M., Perelli, G., and Wooldridge, M.

(2019c). Equilibrium Design for Concurrent Games. In 30th International Confer-

ence on Concurrency Theory (CONCUR 2019), pages 22:1–22:16.

[Gutierrez et al., 2019d] Gutierrez, J., Najib, M., Perelli, G., and Wooldridge, M.

(2019d). On computational tractability for rational verification. In Proceedings of

148

the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-

19, pages 329–335.

[Gutierrez et al., 2018b] Gutierrez, J., Perelli, G., and Wooldridge, M. (2018b). Im-

perfect information in reactive modules games. Information and Computation,

261(Part):650–675.

[Halpern et al., 1983] Halpern, J., Manna, Z., and Moszkowski, B. (1983). A hard-

ware semantics based on temporal intervals. Technical report, Stanford, CA, USA.

[Halpern and Moses, 1990] Halpern, J. Y. and Moses, Y. (1990). Knowledge and

common knowledge in a distributed environment. Journal of the ACM, 37(3):549–

587.

[Halpern and Shoham, 1991] Halpern, J. Y. and Shoham, Y. (1991). A propositional

modal logic of time intervals. Journal of the ACM, 38(4):935–962.

[Hansson and Jonsson, 1994] Hansson, H. and Jonsson, B. (1994). A logic for rea-

soning about time and reliability. Formal Aspects of Computing, 6(5):512–535.

[Hennessy and Milner, 1985] Hennessy, M. and Milner, R. (1985). Algebraic laws for

nondeterminism and concurrency. Journal of the ACM, 32(1):137–161.

[Herzig et al., 2016] Herzig, A., Lorini, E., Maffre, F., and Schwarzentruber, F.

(2016). Epistemic boolean games based on a logic of visibility and control. In

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intel-

ligence, IJCAI 2016, pages 1116–1122.

[Holzmann, 1997] Holzmann, G. (1997). The Spin model checker. IEEE Transactions

on Software Engineering, 23(5):279–295.

[Hurwicz and Reiter, 2006] Hurwicz, L. and Reiter, S. (2006). Designing Economic

Mechanisms. Cambridge University Press.

[Jurdzinski, 1998] Jurdzinski, M. (1998). Deciding the winner in parity games is in

UP ∩ co-up. Information Processing Letters, 68(3):119–124.

[Kamp, 1968] Kamp, H. (1968). Tense Logic and the Theory of Linear Order. PhD

thesis, UCLA.

149

[Kirilenko et al., 2017] Kirilenko, A., Kyle, A. S., Samadi, M., and Tuzun, T. (2017).

The flash crash: High-frequency trading in an electronic market. The Journal of

Finance, 72(3):967–998.

[Krentel, 1988] Krentel, M. (1988). The Complexity of Optimization Problems. Jour-

nal of Computer and System Sciences, 36(3):490 – 509.

[Kripke, 1963] Kripke, S. (1963). Semantical analysis of modal logic. Zeitschrift für

Mathematische Logik und Grundlagen der Mathematik, 9:67–96.

[Kuhn, 2003] Kuhn, H. W. (2003). Lectures on the Theory of Games (AM-37).

Princeton University Press.

[Kupferman, 2018] Kupferman, O. (2018). Automata theory and model checking. In

Handbook of Model Checking., pages 107–151.

[Kupferman et al., 2016] Kupferman, O., Perelli, G., and Vardi, M. Y. (2016). Syn-

thesis with rational environments. Annals of Mathematics and Artificial Intelli-

gence, 78(1):3–20.

[Kwiatkowska et al., 2011] Kwiatkowska, M., Norman, G., and Parker, D. (2011).

PRISM 4.0: Verification of probabilistic real-time systems. In Proceedings of the

23rd International Conference on Computer Aided Verification (CAV’11), pages

585–591.

[Ladin et al., 1992] Ladin, R., Liskov, B., Shrira, L., and Ghemawat, S. (1992). Pro-

viding high availability using lazy replication. ACM Transactions on Computer

Systems, 10(4):360–391.

[Lamport, 1980] Lamport, L. (1980). ”sometime” is sometimes ”not never” - on

the temporal logic of programs. In Proceedings of the 7th ACM Symposium on

Principles of Programming Languages, POPL 1980, pages 174–185.

[Laroussinie and Markey, 2015] Laroussinie, F. and Markey, N. (2015). Augmenting

ATL with strategy contexts. Information and Computation, 245:98–123.

[Lewis, 1918] Lewis, C. I. (1918). A survey of symbolic logic. Berkeley University of

California Press.

[Lewis and Langford, 1932] Lewis, C. I. and Langford, C. H. (1932). Symbolic logic.

Century philosophy series. Century Co, New York.

150

[Löding, 2012] Löding, C. (2012). Basics on tree automata. In Modern Applications

of Automata Theory., pages 79–110.

[Lomuscio et al., 2017] Lomuscio, A., Qu, H., and Raimondi, F. (2017). MCMAS: an

open-source model checker for the verification of multi-agent systems. International

Journal on Software Tools for Technology Transfer, 19(1):9–30.

[Lomuscio and Raimondi, 2006] Lomuscio, A. and Raimondi, F. (2006). MCMAS: a

tool for verifying multi-agent systems. In Proceedings of The Twelfth International

Conference on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS 2006).

[Mailath, 1998] Mailath, G. J. (1998). Do people play nash equilibrium? lessons from

evolutionary game theory. Journal of Economic Literature, 36(3):1347–1374.

[Manna and Pnueli, 1992] Manna, Z. and Pnueli, A. (1992). The temporal logic of

reactive and concurrent systems - specification. Springer.

[Maschler et al., 2013] Maschler, M., Solan, E., and Zamir, S. (2013). Game Theory.

Cambridge University Press. Cambridge Books Online.

[MCK Web, 2019a] MCK Web (2019a). MCK. http://cgi.cse.unsw.edu.au/

~mck/pmck/. Accessed: 2019-09-18.

[MCK Web, 2019b] MCK Web (2019b). MCK documentation. http://cgi.cse.

unsw.edu.au/~mck/pmck/mcks/documentation.

[MCMAS Web, 2019] MCMAS Web (2019). VAS Verification of Autonomous Sys-

tems. http://vas.doc.ic.ac.uk/software/mcmas/. Accessed: 2019-09-18.

[McMillan, 1993a] McMillan, K. L. (1993a). The SMV System, pages 61–85. Springer

US, Boston, MA.

[McMillan, 1993b] McMillan, K. L. (1993b). Symbolic Model Checking. Kluwer Aca-

demic Publishers: Dordrecht, The Netherlands.

[McNaughton, 1993] McNaughton, R. (1993). Infinite games played on finite graphs.

Annals of Pure and Applied Logic, 65(2):149 – 184.

[Milner, 1980] Milner, R. (1980). A Calculus of Communicating Systems, volume 92

of LNCS. Springer.

151

http://cgi.cse.unsw.edu.au/~mck/pmck/
http://cgi.cse.unsw.edu.au/~mck/pmck/
http://cgi.cse.unsw.edu.au/~mck/pmck/mcks/documentation
http://cgi.cse.unsw.edu.au/~mck/pmck/mcks/documentation
http://vas.doc.ic.ac.uk/software/mcmas/

[Mogavero et al., 2012] Mogavero, F., Murano, A., Perelli, G., and Vardi, M. Y.

(2012). What makes ATL∗ decidable? A decidable fragment of strategy logic.

In Proceedings of the 23rd Internatinal Conference on Concurrency Theory, CON-

CUR 2012, volume 7454 of LNCS, pages 193–208. Springer.

[Mogavero et al., 2014] Mogavero, F., Murano, A., Perelli, G., and Vardi, M. Y.

(2014). Reasoning about strategies: On the model-checking problem. ACM Trans-

actions on Computational Logic, 15(4):34:1–34:47.

[Mogavero et al., 2010] Mogavero, F., Murano, A., and Vardi, M. Y. (2010). Rea-

soning about strategies. In IARCS Annual Conference on Foundations of Software

Technology and Theoretical Computer Science, FSTTCS 2010, pages 133–144.

[Nash, 1951] Nash, J. (1951). Non-cooperative games. Annals of Mathematics,

54(2):286–295.

[Nisan et al., 2007] Nisan, N., Roughgarden, T., Tardos, E., and Vazirani, V. V., ed-

itors (2007). Algorithmic Game Theory. Cambridge University Press: Cambridge,

England.

[Ohrstrom and Hasle, 1995] Ohrstrom, P. and Hasle, P. F. (1995). Temporal Logic

from Ancient Ideas to Artificial Intelligence. Kluwer Academic Publishers, Dor-

drecht.

[Osborne and Rubinstein, 1994] Osborne, M. J. and Rubinstein, A. (1994). A Course

in Game Theory. The MIT Press: Cambridge, MA.

[Papadimitriou, 1977] Papadimitriou, C. (1977). The Euclidean Travelling Salesman

Problem is NP-complete. Theoretical Computer Science, 4(3):237 – 244.

[Papadimitriou, 1984] Papadimitriou, C. (1984). On the Complexity of Unique Solu-

tions. Journal of the ACM, 31(2):392–400.

[Papadimitriou, 1994] Papadimitriou, C. (1994). Computational complexity.

Addison-Wesley, Reading, Massachusetts.

[Papadimitriou and Yannakakis, 1984] Papadimitriou, C. and Yannakakis, M.

(1984). The complexity of facets (and some facets of complexity). Journal of

Computer and System Sciences, 28(2):244 – 259.

152

[Perelli, 2019] Perelli, G. (2019). Enforcing equilibria in multi-agent systems. In

Proceedings of the 18th International Conference on Autonomous Agents and Mul-

tiAgent Systems, AAMAS ’19, pages 188–196.

[PGSolver, 2019] PGSolver (2019). PGSolver. https://github.com/tcsprojects/

pgsolver. Accessed: 09-09-2019.

[Piterman, 2007] Piterman, N. (2007). From nondeterministic büchi and streett au-

tomata to deterministic parity automata. Logical Methods in Computer Science,

3(3):1–21.

[Piterman and Pnueli, 2006] Piterman, N. and Pnueli, A. (2006). Faster solutions of

rabin and streett games. In Proceedings of the 21th IEEE Symposium on Logic in

Computer Science, LICS 2006, pages 275–284.

[Pnueli, 1977] Pnueli, A. (1977). The temporal logic of programs. In Proceedings of

the 18th Annual Symposium on Foundations of Computer Science, FOCS, pages

46–57.

[Pnueli and Rosner, 1989] Pnueli, A. and Rosner, R. (1989). On the synthesis of a

reactive module. In Proceedings of the Sixteenth ACM Symposium on the Principles

of Programming Languages (POPL), pages 179–190.

[Prezza, 2016] Prezza, N. (2016). CTLSAT: CTL (computation tree logic) SAT

solver. http://github.com/nicolaprezza/CTLSAT. Accessed: 2016-09-23.

[Prior, 1957] Prior, A. N. (1957). Time and Modality. John Locke Lectures. Claren-

don Press.

[Prior, 1967] Prior, A. N. (1967). Past, Present and Future. Oxford, Clarendon Press.

[Prior, 1968] Prior, A. N. (1968). Papers on time and tense. Oxford, Clarendon Press.

[PRISM Web, 2019a] PRISM Web (2019a). PRISM - probabilistic symbolic model

checker. http://www.prismmodelchecker.org/. Accessed: 2019-09-18.

[PRISM Web, 2019b] PRISM Web (2019b). PRISM-games. http://www.

prismmodelchecker.org/games/. Accessed: 2019-09-18.

[PRISM Web, 2019c] PRISM Web (2019c). PRISM-games - examples. http://www.

prismmodelchecker.org/games/examples.php. Accessed: 2019-09-18.

153

https://github.com/tcsprojects/pgsolver
https://github.com/tcsprojects/pgsolver
http://github.com/nicolaprezza/CTLSAT
http://www.prismmodelchecker.org/
http://www.prismmodelchecker.org/games/
http://www.prismmodelchecker.org/games/
http://www.prismmodelchecker.org/games/examples.php
http://www.prismmodelchecker.org/games/examples.php

[Queille and Sifakis, 1982] Queille, J.-P. and Sifakis, J. (1982). Specification and

verification of concurrent systems in CESAR. In Proceedings of the 5th Colloquium

on International Symposium on Programming, pages 337–351.

[Rauch Henzinger and Telle, 1996] Rauch Henzinger, M. and Telle, J. (1996). Faster

Algorithms for the Nonemptiness of Streett Automata and for Communication

Protocol Pruning. In Proceedings of the 5th Scandinavian Workshop on Algorithm

Theory, SWAT, pages 16–27.

[Reniers and Willemse, 2010] Reniers, M. A. and Willemse, T. A. C. (2010). Folk the-

orems on the correspondence between state-based and event-based systems. CoRR,

abs/1011.0136.

[Reynaud, 2016] Reynaud, D. (2016). Mr.waffles. http://mrwaffles.gforge.

inria.fr/. Accessed: 2016-09-23.

[Russell et al., 2016] Russell, S., Dewey, D., and Tegmark, M. (2016). Research Pri-

orities for Robust and Beneficial Artificial Intelligence. arXiv:1602.03506 [cs, stat].

arXiv: 1602.03506.

[S. Heubach and T. Mansour, 2009] S. Heubach and T. Mansour (2009). Combina-

torics of Compositions and Words: Solutions Manual. Chapman & Hall/CRC.

[Savitch, 1970] Savitch, W. J. (1970). Relationships between nondeterministic and

deterministic tape complexities. Journal of Computer and System Sciences,

4(2):177 – 192.

[Shapley, 1953] Shapley, L. S. (1953). Stochastic games. Proceedings of the National

Academy of Sciences of the United States of America, 39(10):1095–1100.

[Shoham and Leyton-Brown, 2008] Shoham, Y. and Leyton-Brown, K. (2008). Multi-

agent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge

University Press: Cambridge, England.

[Sistla and Clarke, 1985] Sistla, A. P. and Clarke, E. M. (1985). The complexity of

propositional linear temporal logics. Journal of the ACM, 32(3):733–749.

[Sistla et al., 1987] Sistla, A. P., Vardi, M. Y., and Wolper, P. (1987). The com-

plementation problem for büchi automata with appplications to temporal logic.

Theoretical Computer Science, 49:217–237.

154

http://mrwaffles.gforge.inria.fr/
http://mrwaffles.gforge.inria.fr/

[Stefansson et al., 2019] Stefansson, E., Fisac, J. F., Sadigh, D., Sastry, S. S., and

Johansson, K. H. (2019). Human-robot interaction for truck platooning using

hierarchical dynamic games. In 18th European Control Conference, ECC 2019,

Naples, Italy, June 25-28, 2019, pages 3165–3172.

[Tarski, 1955] Tarski, A. (1955). A lattice-theoretical fixpoint theorem and its appli-

cations. Pacific Journal of Mathematics, 5(2):285–309.

[Toumi et al., 2015] Toumi, A., Gutierrez, J., and Wooldridge, M. (2015). Proceed-

ings of the 12th International Colloquium on Theoretical Aspects of Computing,

ICTAC 2015, chapter A Tool for the Automated Verification of Nash Equilibria in

Concurrent Games, pages 583–594.

[Ummels and Wojtczak, 2011] Ummels, M. and Wojtczak, D. (2011). The Complex-

ity of Nash Equilibria in Limit-Average Games. In Proceedings of the 22nd Inter-

national Conference on Concurrency Theory, CONCUR, pages 482–496.

[van Benthem, 2002] van Benthem, J. (2002). Extensive games as process models.

Journal of Logic, Language and Information, 11(3):289–313.

[van der Hoek et al., 2005] van der Hoek, W., Lomuscio, A., and Wooldridge, M.

(2005). On the complexity of practical ATL model checking. In Proceedings of

the Fifth International Joint Conference on Autonomous Agents and Multiagent

Systems (AAMAS-2006), Hakodate, Japan.

[van Glabbeek and Weijland, 1996] van Glabbeek, R. J. and Weijland, W. P. (1996).

Branching time and abstraction in bisimulation semantics. Journal of the ACM,

43(3):555–600.

[Vardi, 1995] Vardi, M. Y. (1995). Alternating automata and program verification.

In Computer Science Today: Recent Trends and Developments, pages 471–485.

[Vardi and Wolper, 1986] Vardi, M. Y. and Wolper, P. (1986). An automata-theoretic

approach to automatic program verification (preliminary report). In Proceedings

of the Symposium on Logic in Computer Science (LICS ’86), pages 332–344.

[Velner et al., 2015] Velner, Y., Chatterjee, K., Doyen, L., Henzinger, T., Rabinovich,

A., and Raskin, J. (2015). The Complexity of Multi-Mean-Payoff and Multi-Energy

Games. Information and Computation, 241:177–196.

155

[Venema, 1991] Venema, Y. (1991). A modal logic for chopping intervals. Journal of

Logic and Computation, 1(4):453–476.

[Vester, 2013] Vester, S. (2013). Alternating-time temporal logic with finite-memory

strategies. In Proceedings Fourth International Symposium on Games, Automata,

Logics and Formal Verification, GandALF 2013, pages 194–207.

[Weiß, 1999] Weiß, G., editor (1999). Multi-Agent Systems. The MIT Press: Cam-

bridge, MA.

[Wooldridge, 2002] Wooldridge, M. (2002). An Introduction to Multiagent Systems.

John Wiley & Sons.

[Wooldridge et al., 2013] Wooldridge, M., Endriss, U., Kraus, S., and Lang, J. (2013).

Incentive engineering for Boolean games. Artificial Intelligence, 195:418 – 439.

[Wooldridge et al., 2016] Wooldridge, M., Gutierrez, J., Harrenstein, P., Marchioni,

E., Perelli, G., and Toumi, A. (2016). Rational verification: From model check-

ing to equilibrium checking. In Proceedings of the 30th Conference on Artificial

Intelligence, AAAI, pages 4184–4191.

[Wuu and Bernstein, 1984] Wuu, G. T. and Bernstein, A. J. (1984). Efficient solu-

tions to the replicated log and dictionary problems. In Proceedings of the Third

Annual ACM Symposium on Principles of Distributed Computing, PODC ’84, pages

233–242.

[Zwick and Paterson, 1996] Zwick, U. and Paterson, M. (1996). The Complexity of

Mean Payoff Games on Graphs. Theoretical Computer Science, 158(1):343 – 359.

156

	List of Notations
	Introduction
	Motivation
	Multi-agent Systems and Games
	Structure of the Thesis

	Background
	Modal Logics for Multi-agent Systems
	Temporal Specification and Verification of Systems
	Linear Temporal Logic
	Computation Tree Logic
	LTL vs CTL
	Temporal Logic Model Checking

	Strategic Ability of Agents
	Strategic Behaviour of Players
	Strategies in Concurrent Games

	Logics for Strategies
	Alternating-time Temporal Logic
	Strategy Logic

	Verifying Strategies
	Model Checking ATL
	Model Checking SL

	Recent Developments of Model Checking Tools
	PRISM-games
	MCK
	MCMAS
	PRALINE

	Rational Verification
	SRML
	LTL Reactive Modules Game
	CTL Reactive Modules Games

	Concurrent Multi-Player Games
	Equilibrium Checking
	A Prototype Equilibrium Checking Tool

	Rational Verification with MCMAS
	Interpreted Systems
	Interpreted System Programming Language
	Rational Verification with MCMAS
	Translating SRML to ISPL
	States, Actions, and Variables in ISPL
	Simulating Public Variables in ISPL
	Initial States in ISPL
	Protocols in ISPL

	Solving Rational Verification Problems with MCMAS
	Summary

	Parity Games for Rational Verification and Synthesis
	Reasoning with Parity Games
	LTL Games to Parity Games
	Nash Equilibria Characterisation
	Finding Nash Equilibria
	Synthesis and Verification
	The Role of Bisimilarity
	Summary

	Some Tractable Cases of Rational Verification
	Preliminaries
	Decision Problems
	Games of General Reactivity of Rank 1
	Mean-Payoff Games
	Summary

	Equilibrium Design
	From Mechanism Design to Equilibrium Design
	Equilibrium Design: Weak Implementation
	Equilibrium Design: Strong Implementation
	Optimality and Uniqueness of Solutions
	Optimality and Uniqueness in the Weak Domain
	Optimality and Uniqueness in the Strong Domain

	Summary

	Implementation & Evaluation
	Description
	Features & Usage
	Case Studies
	Gossip Protocol
	Replica Control

	Evaluation
	Experiment I
	Experiment II
	Experiment III

	Conclusions
	Contributions
	Discussion
	Future Work

	Bibliography

